• Title/Summary/Keyword: 주응력 회전

Search Result 80, Processing Time 0.024 seconds

A Constitutive Model for Rotation of Principal Stress Axes during Direct Simple Shear Deformation (직접단순전단변형에 따른 주응력 방향의 회전을 고려한 구성모델)

  • Park, Sung-Sik;Lee, Jong-Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.53-62
    • /
    • 2008
  • A constitutive model, which can simulate the effect of principal stress rotation associated with direct simple shear test, is proposed in this study. The model is based on two mobilized planes. The plastic strains occur from the two mobilized planes, and depend on stress state, and they are added. The first plane is a plane of maximum shear stress, which rotates about the horizontal axis, and the second plane is a horizontal plane which is spatially fixed. The second plane is used to consider the effect of principal stress rotation on simple shear tests under different stress states. The soil skeleton behavior observed in drained simple shear tests is captured in the model. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program FLAC. The model is first calibrated with drained simple shear tests on loose Fraser River sand. The measured shear stress and volume change are partially induced by principal stress rotation and compared with model calculations. The model is verified by comparing predicted and measured settlements due to rigid footing resting on loose sands. Settlements predicted by the proposed model were very similar to measured settlements. Mohr-Coulomb model can not consider the effect of principal stress rotation and its prediction was only 20% of measured settlements.

The Effects of Principal Stress Rotation in K0-Consolidated Clay (K0-압밀점토(壓密粘土)의 주응력회전(主應力回轉) 효과(効果))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.159-164
    • /
    • 1988
  • The directions of the principal strain increment, stress, and stress increment during rotation of the principal stress axes at any stress level was studied for $K_0$-consolidated clay using torsion shear apparatus with individual control of the vertical stress, the confining pressure, and the shear stress on hollow cylinder specimens under undrained and drained condition. The torsion shear tests were performed according to predetermined stress-paths, which were chosen to cover over the full range of rotation of principal stress axes. The test results indicated that the strain increment vectors at failure coincided with the stress vectors. That is, the direction of strain increment coincided with the direction of stress increment at small stress levels and with the direction of stress at higher stress levels, which indicated that the behavior of clay was transfered from elastic to plastic as the stress level was increased. The applicability of the elastoplastic theory for modeling of the behavior of clay during rotation of the principal stress axes was given.

  • PDF

A Study on the estimation of the flow characteristics and the bottom shear stress in an annular flume (환형수조의 내부 흐름특성 및 바닥전단응력 산정에 대한 연구)

  • Yang, Su-Hyun;Im, Ik-Tae;Hwang, Kyu-Nam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.176-176
    • /
    • 2011
  • 환형수조는 점착성 퇴적물의 이송특성 연구를 위해 가장 선호되는 실험 장치로 알려져 있다. 과거 많은 연구자들은 퇴적물의 이송특성, 특히 침식/퇴적 특성 조사를 위해 주로 수로를 이용한 실험적 연구를 수행하였는데, 최초의 실험적 연구들은 주로 직선수조에서 수행되었다. 그러나 입자간의 응집이 중요한 역할을 하는 점착성 퇴적물의 경우에, 직선수조 끝단에서의 자유낙하 및 재순환 펌프의 날개에 의해 응집된 토사가 쉽게 분리될 수 있어 그 타당성이 의문시 되어 왔으며, 이러한 단점을 보완하기 위해 환형수조가 고안되었다. 환형수조는 수면과 접하여 회전하는 상부링의 마찰력에 의해 흐름이 생성되기 때문에 시간의 제약 없이 흐름조건을 동일하게 만들 수 있다는 큰 장점을 갖는다. 그러나 환형수조는 원주유속의 속도차이 및 원심력으로 인한 2차 순환류를 형성시켜 반경 방향(radial direction)에서의 바닥전단응력을 불균일하게 하는 단점을 갖는다. 이러한 2차 순환류와 바닥전단응력의 불균일을 저감시키기 위하여 환형수조의 몸체를 상부링의 회전 방향과 역방향으로 직접 회전시키는 방법이 채택되어져 왔다. 한편, 환형수조의 상부링과 몸체를 서로 역방향으로 동시에 회전시키는 양방향 회전(counter-rotation)의 적용을 위해서는 2차 순환류가 최소가 되며 바닥전단응력이 균일해지는 최적 회전속도비에 대한 분석은 필수적 사항이다. 이를 위하여, 상부링과 몸체의 회전속도에 따라 변화하는 수조내부의 흐름특성 및 평균바닥전단응력에 대한 연구가 선행되어야만 한다. 이에 본 연구에서는 전산유체역학을 이용하여 전북대에 설치된 환형수조의 상부링과 몸체의 회전속도에 따라 변화하는 수조내부에서의 흐름특성 및 바닥전단응력에 대한 분석이 수행되었다. 또한, 이를 기초로, 환형수조의 최적 회전속도비 산출을 위한 연구가 수행 중에 있다. 이러한 결과들은 추후 환형수조를 이용한 점착성 퇴적물의 침식/퇴적 등과 같은 이송특성 연구시, 퇴적물에 작용하는 흐름조건의 정밀산정을 위한 기초자료로 활용될 수 있을 것이다.

  • PDF

A Comparative of Ground Stress with Difference of the Fixed Point Loading and Moving Wheel Loading (모형실험을 통한 고정 및 이동하중 재하 방법에 따른 노반 변형거동 비교)

  • Choi, Chan-Yong;Shin, Eun-Chul;Eum, Ki-Young;Shin, Min-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • In this paper, it was compared the characteristics of the stress and settlement that occur from a track on the ground using a model test and has quantitatively analyzed the difference based on stress path and effect of the rotation of principal stress. Under identical roadbed conditions, the settlement generated by moving wheel loads were found to be 6 times and 3 times larger than that from static loads and cyclic loads, respectively. The deviator stress affecting shear deformation and the length of stress path generated by moving loads were twofold or greater increase than those by static loads. Furthermore, the stress path generated by moving loads was approached more closely to Mohr-Coulomb failure criteria compared to that by static loads. Also, it was found that ballasted track was occurred about 60% of maximum stress at $40^{\circ}$ of the rotation angle of principal stress and was affected with rotation of principal stress with moving wheel loading condition.

Verification of Single Hardening Model (단일 경화 모델의 검증)

  • Kim, Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.821-825
    • /
    • 2007
  • In this study, the single hardening model with stress history-dependent plastic potential, which has been most recently proposed based on the critical state soil mechanics and needs few model parameters, was verified for the normally, lightly, and heavily over-consolidated clayey specimens. The triaxial compression tests were strictly conducted. The predictions using the single hardening model generally agree with the measurement. The discrepancy exists on its main focusing on the principal stress rotation; however, the plastic work H and the principal stress rotation angle ${\beta}$ are found to be effective indicators of loading history for the plastic potential function of the stress path dependent materials.

  • PDF

Behavior of K0-Consolidated Clay in Torsion Shear Tests (비틀림 전단시험(剪斷試驗)에 의한 K0-압밀점토(壓密粘土)의 거동(擧動))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.151-157
    • /
    • 1988
  • A series of torsion shear tests were performed according to various stress-paths on hollow cylinder specimens of $K_0$-consolidated clay to investigate the influence of rotation of the principal stresses on the stress-strain and strength characteristics. The effects of stress-paths and reorientation of principal stress were mainly observed in the prefailure stress-strain behavior. The experimentally obtained failure surface from torsion shear tests could practically be modeled by an isotropic failure criterion. Coupling effects between stresses and strains were investigated when both torsion shear and vertical stresses were applied. The work-space in torsion shear tests was illustrated and the relation between stresses and strain increments was also investigated in the work-space.

  • PDF

A Basic Study on Torsion Shear Tests in Soils (흙의 비틀림전단시험에 관한 기초적 연구)

  • 홍원표
    • Geotechnical Engineering
    • /
    • v.4 no.1
    • /
    • pp.17-28
    • /
    • 1988
  • Among several types of element tests to predict soil behalf.iota in a laboratory, the torsion shear apparatus, in which the directions of principal stresses could be rotated during shearing, wra explained. In this study, this torsion shear apparatus was improved so as to be used in tests on clay specimens . And some undrained torsion shear tests u.ere performed on remolded specimens of Ko-consolidated clay to investigate the influence of reorientation of the principal stress directions on the stress-strain behavior The soil behavior by the torsion shear apparatus without torque was compared It.ith that by the conventional triaxial compression tests . The stress path, provided by both vertical loads and torque during torsion shear tests, has much effect on the stress-strain behavior, the pore pressure and the effective principal stress ratio . The rotation angle of the principal stress and the b-value were gradually increased with increasing shear strain, but converged to the values at failure.

  • PDF

Influence of Carbon Content on Rolling Contact Fatigue of High Frequency Induction-Hardened Medium Carbon Steels (고주파 유도경화처리한 중탄소강의 회전접촉 피로거동에 미치는 탄소함량의 영향)

  • Choe, Byeong-Yeong;Lee, Dong-Min
    • Korean Journal of Materials Research
    • /
    • v.7 no.9
    • /
    • pp.744-749
    • /
    • 1997
  • 본 연구에서는 고주파 유도경화처리한 중탄소강의 회전접촉 피로거동을 0.44wt.%C강과 0.55wt.%C강을 사용하여 조사하였다. 회전접촉 피로시험은 Polymet RCF-1 시험기에서 탄성유체 윤활 조건으로 회전속도 8,000rpm, 최대 Hertz응력 492kg/m$m^2$을 가하면서 실시하였다. 미세한 lath마르텐사이트가 고주파 유도경화한 0.44wt.%C강과 0.55wt.%C강의 표면경화층에 형성되었고 소량의 페라이트가 일부 형성되었으며 0.44wt.%C강과 0.55wt.%C에 비해 비교적 큰 페라이트가 나타났다. 회전접촉 피로시험 후 표면경도가 거의 유지되는 표면경화층에서 회전접촉 피로시험전에 비해 경도가 상승하였다. 이 경도증가량의 최대치($\Delta$ Hv$_{max}$)와 피로수명과의 관계를 조사한 결과 0.55wt.%C강이 0.44wt.%C강에 비해 회전접촉 피로중에 일어나는 소변형에 대한 높은 저항성에 주로 기인하여 $\Delta$ Hv$_{max}$값은 낮게 나타나고 피로수명은 높게 나타났다.

  • PDF

The Stress -Strain Behavior of Sand in Torsion Shear Tests (비틀림전단시험에 의한 모래의 응력 -변형률 거동)

  • 남정만;홍원표
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.65-82
    • /
    • 1993
  • A series of torsion shear tests were performed to study the drained stress -strain behavior of medium dense Santa Monica Beach sand under various stress paths. The torque was applied to both clockwise and counterclockwise directions at the end of hollow cylinder specimen. Two clip gages had been previously used to measure the changes in wall thickness and diameter of the specimen. In this study, however, the lateral strain was determined by measuring volume changes in specimen. Specimens were prepared by the air pluviation method and gaseous carbon deozide( CO2) was used to measure precisely volumetric strain in specimen. The drained stress -strain behavior of cohesionless Boils during rotation of principal stress directions was analysed based on the results of torsion shear tests. The coupling of mal stress were applied. It was also found from the test results that the atrial strain at failure decreased with increasing value.

  • PDF