• 제목/요약/키워드: 주응력 방향

Search Result 342, Processing Time 0.03 seconds

Korea Stress Map 2020 using Hydraulic Fracturing and Overcoring Data (수압파쇄와 오버코어링 자료를 활용한 한국응력지도 2020)

  • Kim, Hanna;Synn, Joong-Ho;Park, Chan;Song, Won Kyong;Park, Eui Seob;Jung, Yong-Bok;Cheon, Dae-Sung;Bae, Seongho;Choi, Sung-Oong;Chang, Chandong;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.31 no.3
    • /
    • pp.145-166
    • /
    • 2021
  • Korea Stress Map database is built by integrating actual data of 1,400 in-situ stress measurements using hydraulic fracturing and overcoring method in South Korea. Korea Stress Map 2020 is presented based on the guideline proposed by World Stress Map Project. As detailed data, stress ratio and maximum horizontal stress direction distribution for each region are also presented. The dominant maximum horizontal stress direction in the Korean Peninsula is from northeast to southeast, and the magnitude of the in-situ stress is relatively distributed. There is some stress heterogeneity caused by local characteristics such as topographical and geological properties. We investigated case studies in which the in-situ stress was affected by mountainous topography, difference in rock quality of fracture zone, presence of mine or underground cavities, and geological structure of fault zone.

Study on Tensile Properties of AlSi10Mg produced by Selective Laser Melting (SLM 공정 기법으로 제작한 AlSi10Mg 인장특성에 관한 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.25-31
    • /
    • 2018
  • Selective Laser Melting is one of the representative 3D printing techniques for handling metal materials. The main factors influencing the characteristics of structures fabricated by the SLM method include the build-up angle of structures, laser power, laser scan speed, and scan spacing. In this study, the tensile properties of AlSi10Mg alloys were investigated by considering the build-up angle of tensile test specimens, laser scanning speed and scan spacing as variables. The yield stress, tensile strength, and elongation were considered as tensile properties. From the test results, it was confirmed that the yield stress values were lowered in the order of 0, 45, and 90 based on the manufacturing direction of the tensile specimen. The maximum yield stress value was obtained at 1870 mm / min based on the laser scan speed. The yield stress size decreased with decreasing scan speed. Based on the laser scan spacing, as the value increases, the yield stress increases, but the variation is smaller than the other test criteria. The tendency of the tensile strength and elongation variation depending on the test conditions was difficult to understand.

Effect of Implant Preload on the Marginal Bone Stresses Studied by Three Dimensional Finite Element Aanalysis (임플란트 고정체와 지대주 간의 전하중 크기가 골응력에 미치는 영향에 대한 유한요소해석)

  • Nam, Hyo-Jun;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.2
    • /
    • pp.127-138
    • /
    • 2012
  • This study is to assess the effect of preload level on the stress development at the marginal cortical bone surrounding implant neck. A finite element model was created for a single implant placed in the lower jaw bone. An external load of 100N was applied on the top of abutment at 30 degree with the implant axis in lingo-buccal direction. Five different preloads, i.e. 0, 200, 400, 600, 800N were applied to the abutment stem to investigate if and/or how the preload affects on the marginal bone stress. Differences in the marginal bone stress were recorded depending on the level of preload. On the other hand, the tensile stress on the marginal cortical bone decreased in models of higher preload. Preloads between abutment/fixture can increase compressive stresses in the marginal cortical bone although the amount may be insignificant as compared to those generated by functional forces.

Stress-Dependent Failure Criteria for Marine Silty Sand Subject to Cyclic Loading (반복하중을 받는 해양 실트질 모래의 응력기반 파괴기준)

  • Ryu, Tae Gyung;Kim, Jin Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.15-23
    • /
    • 2015
  • An experimental study has been conducted to evaluate the effects of average and cyclic shear stresses on the undrained failure behaviors of dense marine silty sand by using the Cyclic Direct Simple Shear apparatus. The results show that when the average shear stress ratio is zero, symmetric cyclic shear deformation is the major component of deformation, and permanent shear deformation is relatively small. On the other hand, when the average shear stress ratio is larger than zero, asymmetric permanent shear deformation is the major component, and cyclic shear deformation does not change much as the number of cyclic loads increases. The average shear stress ratio has less effects on the number of cyclic loads needed to fail, as compared with the cyclic shear stress ratio. The proposed stress-dependent failure contour can effectively be used to assess the cyclic shear strength of soil beneath the foundation for the design of offshore structures.

A Study on the Resistance of Stress Corrosion Cracking due to Expansion Methods for Steam Generator Tubes in Nuclear Power Plants (원전 증기발생기 전열관의 확관방법에 따른 응력부식균열 저항성 연구)

  • Kim, Young Kyu;Song, Myung Ho
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.149-157
    • /
    • 2014
  • The steam generator tubes of nuclear power plants have various types of corrosion failures during the plant operation. The stress corrosion cracking which occurs on the outer surface of tube is called the secondary side stress corrosion cracking and mainly occurs in the expansion-transition area of tube. The causes are the concentration of impurities by the sludge pile-up related to the geometry of its region and the residual stress by tube expansion in the process of steam generator manufacturing. Especially the directionality and sizes of residual stresses are differed according to the tube expansion methods and the direction and the frequency of tube cracks depend on their characteristics. In bases on the plant experiences, it is notified that circumferential cracks of tubes expanded with explosive expansion method are dominantly occurred compared to those of tubes done with hydraulic expansion one. Therefore in this study, according to tube expansion methods frequencies and sizes of tube cracks with specific direction are compared by means of accelerated immersion test and also the crack morphology and the specific chemicals from water-chemistry environment are observed through the fracture surface examination.

A Study on the Crack-propagation Mechanism of Pre-splitting Method with Consideration of Stress Field (응력장을 고려한 프리스플리팅 공법의 균열발생 원리에 대한 연구)

  • Yoon, Ji-Sun;Woo, Taek-Gyu;Kim, Min-Woo;Jang, Young-Min
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.1-11
    • /
    • 2009
  • Abstract By investigating the stress redistribution caused by the preceding cut blasting when applying the pre-splitting method to tunnel round, an attempt was made to find conditions that were favorable for the propagation of cracks in contour holes. The investigation of the direction of minor principal stress in the numerical analysis revealed that the most significant factor affecting the change of the direction was the loading condition, while the core shape, rock type, and tunnel depth seemed to be less important in determining the direction of minor principal stress. Moreover, the number of cracks tended to increase with the increase of deviatoric stress. Through the model test of pre-splitting, it is confirmed that the pre-splitting method taking the stress field into account can reduce the extent of yield zone and has advantage in controlling the direction of crack than the conventional one.

Behavior of concrete cylinders confined by jacketing with lateral confining stress (횡방향 구속응력에 의한 자켓팅-콘크리트 공시편 거동)

  • Cho, Sung-Chul;Choi, Eun-Soo;Chung, Young-Soo;Cho, Baik-Soon;Choi, Ji-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.157-160
    • /
    • 2008
  • The confined concrete subjected multi-axil stresses have been known as the strength of concrete increases significantly. Many researchers have studied in confining effect of concrete, and now are studying in many fields. Lap splices were located in the plastic hinge region of most bridge piers that were constructed before the adoption of the seismic design provision of Korea Highway Design Specification on 1992. But sudden brittle failure of lap splices may occur under loading. This study introduces a new method to retrofit RC bridge columns with lap splice which do not have enough ductility during an earthquake. The new method use mechanical external pressure and steel plates around RC columns. The jacketing built following the new method shows good results of increasing the compressive strength and ductility of concrete cylinders. The thicker steel jacket shows larger compressive strength, however, the ductility at failure depends on the welding quality of steel jackets. In this study, The effect of the new method is verified through comparing the results of the compressive tests and analysis results.

  • PDF

Strength Characteristics of Sand in Torsion Shear Tests (비틀림전단시험에 의한 모래의 강도특성)

  • Nam, Jeong-Man;Hong, Won-Pyo;Han, Jung-Geun
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.149-162
    • /
    • 1997
  • A series of torsion shear tests were performed to study the strength characteristics of sand under various stress paths during rotation of principal stress. These results can be classified into two groups of 25cm and 40cm according to the height of specimen, and toy que was applied only in the clockwise direction. In this study, strength characteristics of sand for the principal stress ratio in torsion sheartests were investigated and their results were compared with Lade's failure criterion. And the effect for specimen was considered. From the results of tests, friction angle of sand was affected by the deviatoric principal stress ratio $b:(\sigma_2 -\sigma_s)/(\sigma_2, -\sigma_3)$Failure strength of sand was determined not by the stress paths but by the current stress state. From comparison of specimens on 25cm and 40cm height, effect of end restraint could not be found. In the test where b is over 0.5 due to extension force, necking phenomenon by the strain localization was found.

  • PDF

파이프라인 파손의 파괴역학적 해석

  • 이상록;이학주;한승우;김찬규
    • Journal of the KSME
    • /
    • v.32 no.4
    • /
    • pp.379-390
    • /
    • 1992
  • 1) 수치해석 결과, 운용압력으로 인한 엘보우에서의 응력은 재료의 강도에 비해 파손을 발생시 키기에는 상대적으로 작았고, 오히려 온도차에 의한 열응력이 내압에 의한 응력보다 매우 컸다. 즉 축방향 열응력은 운용압력에 의한 것보다 두배 더 크게 나타났다. 2) 파면의 육안 검사 결과, 급격한 파손은 취성 벽개 파괴로 인한 것으로 추측된다. 3) 시험 결과 균열이 시작하여 임계 크기로 진전한 부위인 K사에서 만든 엘보우는 S사에서 만든 것보다 훨씬 더 취성적임을 보여 주었다. 4) 임계 균열크기를 계산하기 위해 파괴 역학적 해석을 사용하는데 그 결과는 파손된 면에서 관 찰한 실제 균열 크기와 상당히 일치하였다. 5) 유사한 사고를 방지하기 위하여, 플랜트를 가동하는 동안 계속적으로 파괴 역학적 개념을 적 용해야 한다. 또한 운용전과 운용중에 잘 준비된 비파괴검사법을 사용하여야 한다.

  • PDF

Numerical study on rock splitting using the cylindrical cavity (원형 자유면을 이용한 암반 파쇄의 수치해석적 연구)

  • Ahn, Sung Kwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.1013-1028
    • /
    • 2017
  • This paper presents key findings obtained from the numerical experiment investigating into the use of the cylindrical cavity for rock splitting operations. The stress and strain path analyses were carried out in order to provide a better insight into the crack formation. The principal stress analysis carried out along the crack line using the results obtained from these numerical analyses allowed the failure of the brittle material and the crack propagation to be investigated. This paper also suggested possible reasons for the change in crack direction observed during the rock splitting operations using the results obtained.