Cheolho, Lee;Hwirae, Kim;Kang-Hyun, Cho;Byeongki, Choi;Bora, Lee
Ecology and Resilient Infrastructure
/
v.9
no.4
/
pp.269-281
/
2022
The prediction of changes regarding the distribution of vegetation and plant species according to climate changes is important for ecosystem management. In this study, we attempted to develop an assessment method to evaluate the possibility of the potential distribution of warm-temperate woody plant species of East Asia in Korea. To begin with, a list of warm-temperate woody plants distributed in China and Japan, but not in Korea, was prepared, and a database consisting their global distribution and bioclimatic variables was constructed. In addition, the warm-temperate vegetation zone in Korea was delineated using the coldness index and relevant bioclimatic data were collected. After the exclusion of multicollinearity among bioclimatic variables using correlation analysis, mean temperature of the coldest quarter, mean temperature diurnal range, and annual precipitation were selected as the major variables that influence the distribution of warm-temperate plants. A multivariate environment similarity surfaces (MESS) analysis was conducted to calculate the similarity scores between the distribution of these three bioclimatic variables in the global distribution sites of the East Asian warm-temperate woody plants and the Korean warm-temperate vegetation zone. Finally, using stepwise variable-selection regression, the mean temperature of the coldest quarter and annual precipitation were selected as the main bioclimatic variables that affect the MESS similarity index. The mean temperature of the coldest quarter accounted for 88% of the total variance. For a total of 319 East Asian warm-temperate woody plant species, the possibility of their potential distribution in Korea was evaluated by applying the constructed multivariate regression model that calculates the MESS similarity index.
Journal of the Korean Data and Information Science Society
/
v.20
no.1
/
pp.179-190
/
2009
In the financial industry, the decision tree algorithm has been widely used for classification analysis. In this case one of the major difficulties is that there are so many explanatory variables to be considered for modeling. So we do need to find effective method for reducing the number of explanatory variables under condition that the modeling results are not affected seriously. In this research, we try to compare the various variable reducing methods and to find the best method based on the modeling accuracy for the tree algorithm. We applied the methods on the pension insurance of a insurance company for getting empirical results. As a result, we found that selecting variables by using the sensitivity analysis of neural network method is the most effective method for reducing the number of variables while keeping the accuracy.
Multivariate regression often appears in longitudinal or functional data analysis. Since multivariate regression involves multi-dimensional response variables, it is more strongly affected by the so-called curse of dimension that univariate regression. To overcome this issue, Yoo (2018) and Yoo (2019a) proposed three model-based response dimension reduction methodologies. According to various numerical studies in Yoo (2019a), the default method suggested in Yoo (2019a) is least sensitive to the simulated models, but it is not the best one. To release this issue, the paper proposes an selection algorithm by comparing the other two methods with the default one. This approach is called principal selected response reduction. Various simulation studies show that the proposed method provides more accurate estimation results than the default one by Yoo (2019a), and it confirms practical and empirical usefulness of the propose method over the default one by Yoo (2019a).
Kim, Dong-Il;Park, Cheong-Sool;Baek, Jun-Geol;Kim, Sung-Shick
Journal of the Korea Society for Simulation
/
v.18
no.4
/
pp.137-148
/
2009
The purpose of this study is to implement variable selection algorithm which helps construct a reliable linear regression model. If we use all candidate variables to construct a linear regression model, the significance of the model will be decreased and it will cause 'Curse of Dimensionality'. And if the number of data is less than the number of variables (dimension), we cannot construct the regression model. Due to these problems, we consider the variable selection problem as a combinatorial optimization problem, and apply GA (Genetic Algorithm) to the problem. Typical measures of estimating statistical significance are $R^2$, F-value of regression model, t-value of regression coefficients, and standard error of estimates. We design GA to solve multi-objective functions, because statistical significance of model is not to be estimated by a single measure. We perform experiments using simulation data, designed to consider various kinds of situations. As a result, it shows better performance than LARS (Least Angle Regression) which is an algorithm to solve variable selection problems. We modify algorithm to solve portfolio selection problem which construct portfolio by selecting stocks. We conclude that the algorithm is able to solve real problems.
Proceedings of the Korea Information Processing Society Conference
/
2002.04b
/
pp.1231-1234
/
2002
본 발표연구서는 정보유통산업이라 할 수 있는 IT분야를 선정하여 설문의 신뢰도와 관여도를 높이기 위하여 표본대상을 구매자로 하여 내적 준거가격이 결과변수에 주는 영향력이 관여도에 따라 조절되는가를 분석하기 위하여 선행 연구검토와 실증 조사를 한 결과 관여도에 따라 결과 변수에 주는 영향력이 조절될 수 있다는 것이다.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.314-314
/
2020
SWAT (Soil and Water Assessment Tool)은 미국 농무성 농업연구소에서 개발된 준분포형(semi-distributed) 수문 모형으로 복합토지이용유역에서 장기간에 걸친 다양한 종류의 토양, 토지이용 및 토지관리 상태의 변화에 따른 유역의 유출량, 유사량 및 영양물질의 영향을 예측하기 위해 개발되었다. SWAT은 기본적으로 다양한 매개변수에 대한 수동 보정 기능을 제공하고 있지만 매개변수 보정에 따른 모의결과의 불확실성을 수반하게 된다. 이러한 문제를 해결하기 위해 자동보정 기능을 제공하는 SWAT-CUP (Calibration and Uncertainty Program)이 개발되었다. SWAT-CUP에서 제공하는 매개변수의 최적화 과정에서 유사한 모의 결과를 산출하는 수천 개의 매개변수조합이 존재하기 때문에 보정기법의 선택에 따라 최종 매개변수의 값이 달라질 수 있다. 불확실성을 발생시키는 요인으로 (1) 매개변수의 선택, (2) 보정 기법, (3) 목적함수, (4) 매개변수의 초기 범위, (5) 모의(simulation)의 실행(run) 및 반복(iteration) 횟수, (6) 위치, 개수 등 보정 자료의 선택 등이 주로 지목된다. 이러한 요인으로 발생하는 불확실성은 SWAT 모형의 구조 및 입력 자료에서 기인하는 것으로, 사용자의 설정에 따라 크게 좌우된다. 본 연구에서는 SWAT 매개변수 보정 과정에서 발생할 수 있는 불확실성을 평가하고, 효율적인 보정 방안을 제시하기 위해 수행되었다. 낙동강 권역의 내성천 유역을 대상으로 SWAT 모형을 구축하였으며, 내성천 본류에 위치한 수위(유량) 관측소의 자료를 활용하여 검·보정을 수행하였다. 모의 결과는 유량의 크기 뿐 아니라 유량의 발생 시기, 유역의 반응 및 증가·감소 경향성을 함께 고려하여 평가하였다. 그 결과 모형 구조에 따른 불확실성의 전이과정을 정확하게 파악하는 것은 불가능하지만 SWAT 모형의 비고유성(non-uniqueness)에 의한 불확실성을 정량화하여 나타내었다.
This study reviewed the overall process of application of contaminant fate and transport model as part of risk assessment. Site characterization and establishment of a conceptual model prior to establishing or selecting a appropriate model were described. Types of models, model selection guidance, and generic site conditions for model application were presented, the process of model calibration, validation, and sensitivity analysis were reviewed. Objectives of modeling should be defined before model selection, and the complexity of selected models should balance the quantity and quality of available input data with the desired model output. If model output is highly sensitive to an assumed or default value of input parameter, or fate and transport models cannot be adequately calibrated or validated, consideration should be given to other options such as using measured data or using another model.
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.562-562
/
2016
신경망 모형에서 학습이란 주어진 입출력시스템에 대하여 원하는 동작을 수행할 수 있도록 연결 강도를 최적의 상태로 적응(adaptation)시키는 과정을 의미한다. 따라서 강수와 지하수위의 관계를 연계시킨 인공신경망기법은 선택적으로 예측 지하수위에 영향을 미치는 변수들을 학습에 의하여 택함으로써 예측모형을 구성할 수 있다. 즉, 예측 지하수위와의 상관관계에 의하여 입력되는 변수와의 연결강도를 조정하여 매개변수 조정 및 모형의 최적화를 자동화할 수 있다. 본 연구에서는 지하수위에 영향을 주는 요소는 지하수위와 강우량이라고 가정하고, 지하수위의 입출력과정을 시계열 분석에 의하여 모형화하였으며 예측지하수위는 강우 및 지하수위의 선행조건과 매우 밀접한 관계를 갖는다. 따라서 선행강우 및 지하수위의 상태에 따라 이를 입력하여 미래의 지하수위를 예측하게 된다. 이 모형을 제주지역의 관측소에 적용한 결과 관측소별로 타당한 예측결과를 도출하였다.
Proceedings of the Korea Information Processing Society Conference
/
2010.11a
/
pp.1681-1683
/
2010
시스템의 한정된 자원을 다수의 사용자들이 프로그램을 실행 시 자원을 효율적으로 배분하기 위하여 작업관리 시스템을 사용한다. 이러한 작업관리 시스템은 여러가지 종류가 있으며 사용하는 시스템의 환경과 작업의 특성에 따라 적당한 작업관리 시스템을 선택하여 사용한다. IBM 시스템은 자체로 제공하는 작업관리 시스템으로서 LoadLeveler를 사용하고 있는데, 이러한 LoadLeveler에서의 클래스를 설계하여 작업의 처리 효율을 높혔으며 계정별 작업 우선순위를 부여하여 사용자게 선택의 폭을 넓히고 최적 환경을 구성하였다. 작업관리 시스템의 주요한 시스템 환경변수는 CPU와 메모리이고, 작업환경 변수는 작업 실행시간이다. 따라서 KISTI IBM 시스템에서는 이러한 환경을 사용자의 배분정책에 맞게 설계하여 시스템의 안정성을 유지하고 사용자의 선택에 따라 전체 작업처리 효율을 증가하였다.
본 논문에서는 재정가격결정모형(裁定價格決定模型)(Arbitrage Pricing Model)을 기초로 우리나라 주식시장에 영향을 주는 거시경제변수가 무엇인가를 찾고자 하였다. 방법론면에서는 과거변수(過去變數)(lagged variables)에 의해서만 기대치를 형성시키는 AIRMA(Autoregressike Integrated with Moving Average) 방법을 이용하기보다는 마코프속성(屬性)(Markov Property)을 갖는 상태공간모형(狀態空間模型) (State Space Model)을 이용하여 보다 합리적인 거시경제 요인의 이노베이션을 하였다. 또한 단순한 요인분석(要因分析)(factor analysis)에 의한 요인추출은 요인의 표본의존성(標本依存性)(Sample dependency)이 심하므로 그룹간 요인분석(inter-battery factor analysis)을 행하여 추정(推定)된 요인(要因)(요인값 : factor score)과 요인수를 결정하여 관련 거시경제변수를 선택한다. 그룹간 요인분석을 위한 그룹을 형성할 때 그룹내에서는 동질성을 그룹간에는 이질성을 최대한 살리는 것이 필요한데, 이를 위해 군집분석(群集分析)(Cluster Analysis)을 사용한 것이 특징이다. 결론적으로 우리나라 주식시장에 영향을 미치는 거시경제요인(巨視經濟要因)으로 단위노동비율, 제조업제품재고지수, 채권프리미엄, 수출물가지수, 정부부문 통화공급, 회사채수익률, 종합주가지수 등 7가지가 있는 것으로 분석되고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.