• Title/Summary/Keyword: 주요변수

Search Result 3,540, Processing Time 0.031 seconds

Characteristics of the Horizontal Stress and the Possibility of Stress Induced Brittle Failure in Chuncheon-Yanggu Mountainous Region by the In-situ Stress Measurements (현장 측정에 의한 춘천-양구 산악지역 내 수평응력 분포와 취성파괴 가능성에 관한 연구)

  • Bae Seongho;Jeon Seokwon
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.157-167
    • /
    • 2005
  • Current initial rock stress state is one of the key factors required to evaluate the stability and failure around an excavated opening and its importance increases as the construction depth become deeper and the scale of the rock structure become larger. In this paper, the study was performed to evaluate the characteristics of the regional stress state at Chuncheon-Yanggu mountainous region, the East-North part of Kyeonggi Massif. Forty nine field stress measurements in 9 boreholes were conducted at the depth from 20 m to 290 m by hydraulic fracturing method. The fracturing tracing works were carried out by acoustic televiewer scanning. The study results revealed that the different intial rock stress states presented at different formation rock type and the excessive horizontal stress state with stress ratio(K) close to 3.0 was measured at the depth of 200 m and deeper in the intrusive unite body of the study area. The results from the investigation of excessive horizontal stress and its effect on failure mode showed that there exist several points where the localized excessive horizontal stresses are big enough to potentially induce brittle failures around the future openings greater than 100 m in depth within the granite body of the study area.

Analysis of runoff aggregation structure and energy expenditure pattern for Choyang creek basin on the basis of power law distribution (멱함수 법칙분포를 기반으로 한 조양하 유역의 유출응집구조와 에너지소비 양상에 대한 해석)

  • Kim, Joo-Cheol;Cui, Feng Xue;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.725-734
    • /
    • 2017
  • The main purpose of this study is to analyze runoff aggregation structure and energy expenditure pattern of Choyang creek basin within the framework of power law distribution. To this end geomorphologic factors of every point in the basin of interest, which define tractive force and stream power as well as drainage area, are extracted based on GIS, and their complementary cumulative distributions are graphically analyzed through fitting them to power law distribution. The results indicate that three distinct behavioral regimes are observed from the complementary cumulative distributions of three geomorphogic factors. Based on the parameter estimation of power law distribution by maximum likelihood drainage area and stream power can be judged as scale invariance factor without finite scale while tractive force as scale dependence factor with finite scale. Furthermore, it is judged that tractive force would not follow power law distribution because it shows limited complex system behaviors only within the small extent of scale. The exponent of power law distribution for drainage area obtained in this study by maximum likelihood is larger than the previous researches due to the difference of parameter estimation methodologies. And the exponent for stream power is smaller than the previous researches due to the scaling property of channel slope for the basin of interest.

Recent Research Trends of Mixed Matrix Membranes for CO2 Separation (이산화탄소 분리용 혼합 매질 분리막 최신 연구 동향)

  • Chi, Won Seok;Lee, Jae Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.373-384
    • /
    • 2015
  • In the past few decades, polymeric membrane has played an important role in gas separation applications. For the separation of $CO_2$, one of greenhouse gases, high permselectivity, long-term stability and scale-up are needed. However, conventional polymeric membranes have shown a trade-off relation between permeability and selectivity while inorganic materials are highly permeable but expensive. Mixed matrix membranes (MMMs) combining the advantages of both polymeric and inorganic materials have become a possible breakthrough for the next-generation gas separation membranes. The MMMs could be either symmetric or asymmetric but the latter is more preferred to improve the permeance. Important factors influencing the MMM fabrication include homogeneous distribution of inorganic particles and good interfacial contact between inorganic filler and organic matrix. Recently, metal organic frameworks (MOFs) have received much attention as a new class of porous crystalline materials and a potential candidate for $CO_2$ separation. Zeolitic imidazolate frameworks (ZIFs), a sub-branch of MOFs, are the most widely used in MMMs due to small particle size and appropriate pore size for $CO_2$ separation. One of the major issues associated with the incorporation of porous particles in a polymeric membrane is to control the microstructure of the porous particle materials such as particle size, orientation, and boundary conditions etc. In this review, major challenges surrounding MMMs and the strategies to tackle these challenges are given in detail.

Model Development Determining Probabilistic Ramp Merge Capacity Including Forced Merge Type (강제합류 형태를 포함한 확률적 연결로 합류용량 산정 모형 개발)

  • KIM, Sang Gu
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.3
    • /
    • pp.107-120
    • /
    • 2003
  • Over the decades, a lot of studies have dealt with the traffic characteristics and phenomena at a merging area. However, relatively few analytical techniques have been developed to evaluate the traffic flow at the area and, especially, the ramp merging capacity has rarely been. This study focused on the merging behaviors that were characterized by the relationship between the shoulder lane flow and the on-ramp flow, and modeled these behaviors to determine ramp merge capacity by using gap acceptance theory. In the process of building the model, both an ideal mergence and a forced mergence were considered when ramp-merging vehicles entered the gap provided by the flow of the shoulder lane. In addition, the model for the critical gap was proposed because the critical gap was the most influential factor to determine merging capacity in the developed models. The developed models showed that the merging capacity value was on the increase as the critical gap decreased and the shoulder lane volume increased. This study has a meaning of modeling the merging behaviors including the forced merging type to determine ramp merging capacity more precisely. The findings of this study would help analyze traffic phenomena and understand traffic behaviors at a merging area, and might be applicable to decide the primary parameters of on-ramp control by considering the effects of ramp merging flow.

An Analysis of Effectiveness for Permissive Warrants on the Restrictive Left-Turn Signal Control in Urban Arterial Roads (도시 간선도로에서 제한적 좌회전 신호운영의 적용기준 및 효과분석에 관한 연구)

  • Jeong, In-Taek;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.17-28
    • /
    • 2009
  • There are many limitations in dealing with rapidly changing traffic demand in urban cities. Thus recently, traffic operation and management skills are more emphasized rather than the expansion of traffic facilities. In particular, in the interrupted flow formed by signalized intersections, it is quite important to give optimal signal timing to each intersection with consideration of progression. However, as fixed signal times per direction can affect passing capacity in signalized intersections, the present four-signal phase including a left-turn signal has many limitations, including reduction of directional road capacity when traffic demand is increases dramatically during peak hours. Because of this problem, lots of studies about internal metering techniques for oversaturated signal control skills have progressed but these techniques are not used widely due to the absence of detectors for queue sensing in real-time signal control systems. In this research, a new methodology called the "restrictive left-turn signal control", which is already used at the intersection above Samsung subway station, is suggested in order to reduce control delay of urban arterial roads. The restrictive left-turn signal control allows a driver to make a U-turn and then a right turn instead of turning left in that intersection. With this change, the restrictive left-turn signal control can contribute to increased intersection capacity by reducing the number of signal phases and maximizing the through phase time. However, road structure and traffic conditions at the target intersections should be considered before the adoption of the proposed signal control.

Variation of Flow and Filtration Mechanisms in an Infiltration Trench Treating Highway Stormwater Runoff (고속도로 강우유출수 처리를 위한 침투도랑에서 흐름조건에 따른 여과기작 및 효율분석)

  • Guerra, Heidi B.;Yu, Jianghua;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.20 no.1
    • /
    • pp.63-71
    • /
    • 2018
  • The particle filtration mechanisms in an infiltration trench should be varying due to the different hydraulic conditions during stormwater runoff. The understanding of these variations associated with different filtration mechanisms and their effect on the particle removal efficiency is of vital importance. Therefore, a LID (Low Impact Development) system comprising of an infiltration trench packed with gravel and woodchip was investigated during the monitoring of several independent rainfall events. A typical rainfall event was divided into separate regimes and their corresponding flow conditions as well as filtration mechanisms in the trench were analyzed. According to hydraulic conditions, it was found out that filtration changes between vertical and horizontal flows as well as between unsaturated, saturated, and partially-saturated flows. Particle separation efficiency was high (55-76%) and was mainly governed by physical straining during the unsaturated period. It was then enhanced by diffusion during the saturated period (75-95%). When the trench became partially saturated at the end of the rainfall event, the efficiency decreased which was believed to be due to the existence of a negatively charged air-water interface which limited the removal to positively charged particles.

Severity Analysis of the Pedestrian Crash Patterns Based on the Ordered Logit Model (Ordered Logit Model을 이용한 보행자 사고 심각도 요인 분석)

  • Choi, Jai-Sung;Kim, Sang-Youp;Hwang, Kyung-Sung;Baik, Seung-Yup
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.153-164
    • /
    • 2009
  • This Paper presents the severity analysis result of the year 2006 national pedestrian crashes using the data base of 37,589 records prepared for the National Police Bureau. A set of attributing factors considered to affect pedestrian crash patterns were selected, and their contributing effects were investigated by applying the Ordered Logit Model. This model was selected because this model has been able to afford satisfactory results when the dependent variable involved ordered severity levels; fatal, injury, and property- damage-only in this investigation. The investigation has unveiled the followings; First, the pedestrian crash patterns were dependent upon human -drivel and pedestrian- characteristics including gender, age, and drinking conditions. Second, other contributing factors included vehicle, roadway geometric, weather, and hour of day characteristics. Third, seasonal effect was not contributive to crash patterns. Finally, the application of the Ordered Logit Model facilitated the ordered severity level analysis of the pedestrian crash data. This paper concludes that conventional wisdom on the pedestrian crash characteristics is largely truthful. However, this conclusion is limited only to the data used in this analysis, and further research is required for its generalization.

  • PDF

Effect of Water Temperature on Infectivity of the Parasitoid Amoebophrya sp. Infecting the Harmful Bloom-forming Dinoflagellate Akashiwo sanguinea (유해 적조생물 Akashiwo sanguinea를 감염시키는 포식성 기생생물 Amoebophrya sp.의 감염력에 대한 수온의 영향)

  • JUNG, YOUNGGYO;KIM, SUNJU
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.1
    • /
    • pp.20-31
    • /
    • 2018
  • Marine parasitoid Amoebophrya infects and kills various bloom-forming dinoflagellates and strongly influences the harmful algal bloom dynamics. We investigated the effect of temperature on survival, infectivity, generation time of the parasite from the parasitoid Amoebophrya sp. and the harmful dinoflagellate host Akashiwo sanguinea system. Temperature had a significant effect on the parasite generation time and infectivity. While the lower temperature ($15^{\circ}C$) arrested parasite intracellular development and infectivity, resulting in the longer generation time ($115{\pm}0.1h$), the higher temperatures ($25^{\circ}C$ and $20^{\circ}C$) accelerated the parasite development, with the generation times of $58{\pm}0.1h$ and $83{\pm}0.1h$, respectively. Parasite prevalence (percent of host infected) was $71.5{\pm}0.30%$, $54.3{\pm}1.68%$, and $29.6{\pm}1.42%$ at $25^{\circ}C$, $20^{\circ}C$, and $15^{\circ}C$, respectively. These results suggest that biological control by parasitism on A. sanguinea bloom would not be highly effective during low water temperature season. Further, water temperature would be an important factor of bottom-up controls for the host-parasite population dynamics.

Discrimination of geographical origin for soybeans using ED-XRF (ED-XRF (Energy Dispersive X-ray Fluorescence spectrometer)를 이용한 콩 원산지 판별)

  • Lee, Ji-Hye;Kang, Dong-Jin;Jang, Eun-Hee;Hur, Suel-Hye;Shin, Byeung-Kon;Han, Guk-Tak;Lee, Seong-Hun
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.2
    • /
    • pp.125-129
    • /
    • 2020
  • In this study we developed a method for determining the geographic origin of soybeans by combining energy dispersive X-ray fluorescence spectrometry with statistical analysis. In 2018, 197 soybean samples (100 Korean domestic samples and 97 foreign samples) were collected for the construction of a geographic origin model. The mineral concentrations of 26 elements were measured and determined via the fundamental parameters approach. One-way analysis of variance, t-test, and canonical discriminant analysis were employed to reveal five elements (P, Ni, Br, Zn, and Mn) that could be used for the determination of geographic origins. The sensitivity, specificity, and efficiency for the above method were 91.0, 95.9, and 93.4%, respectively. Validation results from 60 samples collected in 2019 showed a predictive rate of 93.3% for Korean domestic soybeans and 100.0% for foreign soybeans. In conclusion, the combination of energy dispersive X-ray fluorescence spectrometry and chemometrics could be used to effectively determine the geographic origin of soybeans.

Factors Influencing on Patient Safety Management Activities in Operating Room Nurses (수술실 간호사의 환자안전관리활동 영향 요인)

  • Kang, Hee;Choi, Soo-Kyung;Kim, In-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.329-339
    • /
    • 2016
  • The purpose of this study was to investigate the level of job stress and organizational commitment, as well as to identify the factors that influence patient safety management activities among the operating room nurses. Participants were 136 nurses working at 1 university hospital and 9 general hospitals located in G metropolitan city. The data were collected between July 25 and August 7, 2014 using structured questionnaires. Data were analyzed by descriptive statistics, t-test, one-way ANOVA, Pearson's correlation, and multiple regression analysis using SPSS version 21.0. The level of job stress, organizational commitment, and patient safety management activities was 3.76, 3.09, and 4.15, respectively, out of a 5-point scale. Patient safety management activities were significantly correlated with organizational commitment. The significant factors that influence patient safety management activities were organizational commitment and number of patient safety education, which explained 23% of patient safety management activities. In conclusion, organizational commitment and patient safety education have a positive effect on the improvement of patient safety management activities of operating room nurses. It is necessary to develop various intervention programs for operating room nurses to improve organizational commitment and should be reinforced via continuous, systematic patient safety education on patient safety management.