• Title/Summary/Keyword: 주엽 재밍

Search Result 4, Processing Time 0.018 seconds

Jamming Effect of Stand-Off Jammer to Main Lobe of LPI Radar (LPI 레이더에 대한 원격지원 재머의 주엽 재밍 효과)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.3
    • /
    • pp.16-21
    • /
    • 2020
  • This paper describes the jamming characteristics of a stand-off jammer jamming the LPI radar. The LPI radar reduces the side lobes of the receiving antenna to reduce the effect of jamming. It is easy a radar to predict the effect of jamming on a self-protection jammer where the jammer is in the same position as the target. However, for stand-off jammer jamming at different locations from the target, the prediction of jamming effect is complex. In this paper, the jamming effect of LPI radar is analyzed using signal to jamming ratio and burn-through range. Also, when the antenna's side lobe decreases below -30 dB, the stand-off jamming effect in the side lobe direction is weak. So we proposed a new jamming method for the main lobe and analyzed the jamming effect. This study is expected to be useful for the design and operation of aircraft jammers.

A Study on Look Error Estimation and Adaptive Array Angle Estimation (지향 오차 추정과 적응 배열 입사방향 추정 방법에 대한 연구)

  • Lee, Kwan-Hyeong;Song, Woo-Young;Lee, Myung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.155-162
    • /
    • 2011
  • It is using to incident angle estimation technique in order to target estimation in radar. This paper was estimated incident angle estimation for target using adaptive array incident angle and single look error incident angle estimation technique. We estimated signal incident angle of target to removal main lobe and side lobe to adaptive array incident angle technique. It is difficult to correctly target estimation because single look technique increase direction error of signal incident angle. In order to receive a desired target signal must be not almost look error between signal incident angle and look angle. we had decreased to occur a look error using delay time and single look condition to calculation a covariance when incident angle estimate. Through simulation, we show that the proposed incident angle estimation technique improves the performance of target estimation compared to previous method.

Tactical Beamforming for Anti-Jamming Under Limited Feedback (제한된 피드백 상황에서의 항재밍을 위한 전략적 빔형성)

  • Lim, Sung-Ho;Han, Sungmin;Lee, Jaeseok;Choi, Ji-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1410-1413
    • /
    • 2016
  • Array beamforming for anti-jamming means that jamming signals are superposed destructively, while superposing information signals constructively at a receiver. However, according to channel state variation, the anti-jamming performance of the beamforming can be degraded because of large beamwidth of the sidelobe and lower selectivity of the mainlobe. To mitigate this problem, we introduce a beamformed decoy signal which uses frequency band distinguished from the information signal to make the jammer concentrate its jamming power to a wrong target under limited feedback. In this paper, we show that the performance of the proposed scheme can approach that of optimal one with perfect feedback.

Monopulse Beamforming Network for Target Angle Tracking (표적 입사각 추적을 위한 모노펄스 빔형성 네트워크)

  • Moon Sung-Hoon;Han Dong-Seog;Cho Myeong-Je
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.1
    • /
    • pp.53-64
    • /
    • 2004
  • This paper proposes a monopulse beamforming network to estimate a target angle in interference conditions. The proposed system estimates the target direction of arrival (DOA) with two separate beamformings for azimuth and elevation with a planar may. The elevation is extracted from adaptive beamforming in the azimuth direction and the azimuth from adaptive beamforming in the elevation direction. Unlike conventional monopulse beamforming techniques using complex correction formulas or a cascaded architecture of an adaptive array and a mainlobe canceller, the proposed system is very efficient from the computational complexity. The advantage is from fact that the monopulse ratio of the proposed system does not depend on the adapted weights. Moreover, the proposed system can estimate the DOA of the target even for multiple mainlobe interferences since it does not need my kinds of mainlobe maintenance technique.