시계열 데이터에서 패턴을 분석하는 기법은 많은 발전이 이루어져 오고 있으나 주식시장의 경우 패턴 분석 및 예측에 관련되어 많은 연구가 이루어져 있지 않고 있다. 이는 주가의 등락 자체가 본질적으로 무작위하다고 생각되어지고 있기 때문이다. 본 연구에서는 주가의 등락이 보여주는 무작위성의 정도를 Kolmogorov Complexity로 측정, 그 무작위성의 정도와 본 논문에서 제시한 반전역정렬로 예측하는 주가의 예측 간의 상관관계를 보인다. 이를 위하여 KOSPI 주식 데이터 28년 690개의 데이터를 수집하여 이들 주식 데이터의 등락을 양자화된 문자열로 변환하여 본 논문에서 제시한 방법의 의미를 평가하였다. 그 결과 Kolmogorov Complexity가 높은 경우에는 주가 변동 예측이 어려우며, Kolmogorov Complexity가 낮은 경우에는 주식 변동 예측은 가능하나 등락 예측 율은 단기 예측은 12%이상의 예측율을 보일 수 없으며, 장기 예측의 경우 54%의 예측율로 수렴함을 확인하였다.
저금리 시대의 도래로 인해 많은 투자자들이 주식 시장으로 몰리고 있다. 과거의 주식 시장은 사람들이 기업 분석 및 각자의 투자기법을 통해 노동 집약적으로 주식 투자가 이루어졌다면 최근 들어 인공지능 및 데이터를 활용하여 주식 투자가 널리 이용되고 있는 실정이다. 인공지능을 통해 주식 예측의 성공률은 현재 높지 않아 다양한 인공지능 모델을 통해 주식 예측률을 높이는 시도를 하고 있다. 본 연구에서는 다양한 인공지능 모델에 대해 살펴보고 각 모델들간의 장단점 및 예측률을 파악하고자 한다. 이를 위해, 본 연구에서는 주식예측 인공지능 프로그램으로 인공신경망(ANN), 심층 학습 또는 딥 러닝(DNN), k-최근접 이웃 알고리즘(k-NN), 합성곱 신경망(CNN), 순환 신경망(RNN), LSTM에 대해 살펴보고자 한다.
경제 위기 대비를 위해 인공지능을 활용한 주식시장 변동성 이상을 탐지하는 목적을 가지고 있다. 글로벌 이슈와 경제 위기 대비를 위해 주식시장 변동성 예측의 중요성이 부각되고 있으며, 기존의 주식시장 변동성 지수인 VIX 의 한계로 인해 더 복잡한 모델 및 인공지능을 활용한 연구에 관심이 집중되고 있다. 기존의 주식시장 변동성 예측에 관한 연구들은 통계적인 방법을 사용했으며 인공지능을 이용한 연구 또한 대부분 이상치 구간을 표시하여 예측을 목표로 하고 있으나 이러한 접근법은 라벨이 있는 데이터 수집 어려움, 클래스 불균형 문제가 있다. 본 연구는 인공지능을 활용한 주식시장 변동성 탐지에 기여하고 지도 학습 방식 대신 비지도 학습 기반의 이상탐지모델을 사용하여 주식시장 변동성을 예측하는 새로운 방법론을 제안한다. 본 연구에서 개발한 인공지능 모델은 IsolationForest 모델을 활용하며, 시계열 데이터를 전처리한 후 정상성을 확보하는 등의 과정을 거친다. 실험 결과로 인공지능 모델이 주요 경제이슈를 이상치로 검출하는 성능을 확인하였으며 재현율 약 93.6%, 정밀도 100%로 높은 성능을 달성했다.
금융시장에서 주식 가격 자체 또는 가격의 방향성에 대한 예측은 오래 전부터 관심의 대상이 되어 왔기에 여러 방면에서 다양한 연구가 이어져 왔다. 특히 1960년대에 들어서며 많은 연구가 진행되었고 예측가능성에 대해 찬반의 의견들이 있었는데, 1970년대에 나타난 효율적 시장 가설이 지지를 받으면서 주식 가격의 예측은 불가능하다는 의견이 주를 이루었다. 그러나 최근 기계학습 등 예측기술의 발달로 인해 주식 시장에서 미래를 예측해 보려는 새로운 시도가 이어져, 주식시장의 효율성을 부정하고 높은 예측력을 주장하는 연구들이 등장하고 있다. 이 논문에서는 과거 연구들을 평가방법 별로 정리하고, 새로운 주장의 신빙성을 확인하기 위해 이차판별분석, support vector machine, random forest, extreme gradient boost, 심층신경망 등 다양한 기계학습 모형을 적용하여 한국유가증권시장에 상장된 종목 중 삼성전자, LG화학, Naver 주식 가격의 방향성을 예측해보았다. 이때, 널리 사용되는 기술적 지표 변수들과 더불어 price earning ratio, price book-value ratio 등 회계지표를 활용한 변수와, 은닉마르코프모형의 출력값 변수를 사용하였다. 분석결과, 이번 연구의 조건 하에서는 통계적으로 유의미한 예측력을 제시하는 모형이 존재하지 않았고, 현 시점에서 단기 주가 방향성의 예측은 어렵다고 판단되었다. 비교적 단순한 이차판별분석 모형과 회계지표를 활용한 변수를 추가한 모형이 상대적으로 높은 예측력을 보였다는 점에서, 복잡한 모형을 시도하기 보다는 주식 가격에 대한 투자자들의 의견 및 심리가 반영될 수 있는 다양한 변수를 개발하여 활용한다면 향후 유의미한 예측이 가능할 수도 있을 것이다.
4차산업혁명의 핵심인 인공지능 기술은 인간의 능력을 뛰어넘어 주식예측에도 적용하고 있으면 예측이 불가능한 것을 딥러닝 기법과 머신러닝을 통하여 지능화된 판단을 내리고 있는 실정이다. 미국의 펀드매니지먼트 회사에서는 증시 에널리스트의 역할을 인공지능이 대신하고 있으며, 이 분야의 연구가 활발히 진행 중에 있다. 본 연구에서는 BLSTM을 이용하여 기존의 LSTM방식의 단방향 예측에서 발생하는 오류를 줄이고, 양방향으로 예측하여 예측에 대한 오류를 줄이고, 주식 가격에 영향을 미치는 거시 지표, 즉 경제성장률, 경제지표, 이자율, 무역수지, 환율, 통화량을 분석한다. 거시 지표 분석 후에 개별 주식에 대한 PBR, BPS, ROE 예측과 가장 주식 가격에 영향을 미치는 외국인, 기관, 연기금 등 매수와 매도 물량을 분석하여 주식의 목표주가를 정확히 예측하여 주식 투자에 도움을 주기 위해 본 연구를 수행했다.
본 연구에서는 우리나라의 금융자산, 특히 회사채와 주식이 인플레이션과 관련하여 어떠한 행태를 보이는가를 실증적으로 살펴본다. 1976년부터 1992년까지의 기간중 채권 및 주식수익률에 피서가설이 성립하는가의 여부, 주식수익률과 기대인플레이션과 관련된 Fama의 허구성가설 및 Geske & Roll의 역인과성가설 등을 공적분관계검정 및 VAR모형의 예측오차 분산분해등을 통하여 포괄적으로 결정한다. 이를 위하여 본 연구는 다음과 같은 순서로 진행하였다. 첫째, 단순정태회귀분석을 통하여 우리나라 금융시장에서 주식이나 채권이 기대된 인플레이션이나 예상치 못했던 인플레이션에 대해 얼마나 인플레이션방어수단으로 유효한지를 살펴보았다. 우선, 회사채수익률의 경우 피서가설의 성립을 기각하기 어려웠다. 반면, 주식의 경우에는 피서가설이 성립될 수 없음은 물론이고, 대부분의 선진국가들처럼 기대인플레이션에 주식수익률이 만대방향으로 반응하는 것으로 나타났다. 주식수익률을 설명하는 변수에 예상되는 산업생산증가나 통화량증가를 나타내는 변수들을 추가하여도 주식수익률과 기대인플레이션간의 부의 관계는 여전히 유의적인 것으로 남아있었다. 따라서 파마의 주식수익률과 기대인플레이션간의 허위관계가설은 우리나라 주식시장에서는 적용되지 않는 것으로 나타났다. 둘째, 단순정태분석에서 활용된 여러 회귀식들이 가성적회귀관계(假性的回歸關係)를 나타내는 경우를 확인하기 위하여 공적분관계가 형성되는지를 검정하였다. 그 결과, 회사채수익률과 인플레이션은 공적분관계가설이 기각되지 않았으나, 주식수익률과 기대인플레이션간에는 공적분관계가 나타나지 않았다. 공적분관계에 입각하여 오차수정모형을 추정한 결과, 회사채수익률의 변화는 단기적인 인플레이션의 동태를 예측하는데 있어서 도움을 주지만, 기대인플레이션 및 예상산업생산증가률의 변화는 주식실질수익률의 단기적 동해예측에 개별적으로는 도움이 되지 못하였다. 마지막으로 여러 변수들의 관계를 사전적으로 설정하지 않고 VAR 모형의 오차분해를 통하여 인과관제를 분석한 결과, 주식수익률과 기대인플레이션이 허구적(虛構的)인 관계가 아님을 시사하고 있다. 그러나, 주식수익률변동은 예상산업생산증가에 의하여 어느정도 설명이 가능하고 대부분의 경제변수에 대하여는 외생적인 성격을 강하게 보여주고 있어서, 기대인플레이션과의 인과관계에 있어서도 선행적인 위치를 지지하고 있다.
본 논문의 목적은 과거의 산업 포트폴리오 수익률이 확률추세로부터 어떻게 전체 주식시장과 두 가지 거시경제 변수인 경기동행지수와 산업생산 등을 예측할 수 있는 지를 알아보는 데에 있다. 이를 위하여 본 연구에서는 연구모형을 설정한 후 세 가지 검정절차를 제시하고 이를 실증적으로 분석하였다. 당월의 전체 주식시장 수익률은 과거의 시차를 지닌 특정 산업부문 포트폴리오 수익률에 대하여 양(+)의 상관관계를 유지하고 있다는 '예측 1'과 전체 주식시장의 수익률은 특정산업부문의 수익률에 대하여 선행성을 지닐 수 없다는 '예측 2'에 대한 검정 결과는 '예측 1'과 '예측 2'가 지지되고 있음을 파악할 수 있었다. 그리고 산업별 포트폴리오 수익률과 거시경제변수 간의 높은 상관관계를 토대로 하여 전체 주식시장 수익률 예측을 가능하게 하는 업종 정보의 점진적 확산 현상이 발생하게 되는가를 검토하기 위하여 각 산업들의 포트폴리오 수익률과 전체 주식시장 수익률이 VAR 모형을 토대로 볼 경우 Granger 인과관계를 갖고 있는 지를 분석하였다. 분석결과 21개 업종은 각 산업별 포트폴리오 수익률이 전체 주식시장 수익률을 5% 수준에서 통계적으로 유의한 영향을 주고 있음을 알 수 있었다. 이들 21개의 산업별 포트폴리오 수익률은 경제적으로도 중요한 의미를 지니고 있어 산업제품의 가격 상승과 하락이 경제에 미치는 영향을 파악할 수 있다. 특히 음료 업종에서 전체 주식시장 수익률과 상호간의 인과성을 나타내었으며, 인터넷과 화장품 업종에서는 전체 주식시장 수익률이 이들 업종에 대하여 일방적인 영향을 보이고 있음을 알 수 있었다.
COVID-19 팬데믹으로 비대면 경제 상황이 전개되면서 주식시장에서는 언택트 주식 집단이 등장하였다. 본 연구는 COVID-19 팬데믹 상황에서 감염병 확산에 따른 한국 COVID-19 공포지수를 제안하고, 언택트 주식 수익률과 콘택트 주식 수익률에 대한 영향력을 분석하였다. 실증 분석 결과는 다음과 같다. 첫째, 한국 COVID-19 공포지수를 이용한 그랜저 인과관계 분석 결과 대한항공, 하나투어, CJ CGV, 파라다이스와 같은 콘택트 주식의 수익률에서 유의적인 인과성이 나타났다. 둘째, LSTM 모형 기반의 주가 예측 결과 카카오, 대한항공과 네이버의 예측 성과가 높게 나타났다. 셋째, 예측 주가를 이용한 Alexander 필터 진입 전략의 투자 성과는 네이버 선물과 카카오 선물에서 높게 나타났다. 본 연구는 비대면 경제가 본격화된 COVID-19 상황에서 언택트 주식과 콘택트 주식에 대한 COVID-19 팬데믹 확산의 영향력을 분석하였다는 점에서 기존 연구와 차별점을 찾을 수 있다.
이 논문에서는 3대 투자신탁회사의 주식형 펀드의 투자성과를 측정하고자 하는 데 목적이 있다. 추가적으로 자산운용의 실무적 현실을 고려하여 각 펀드의 속성(주식편입비율 한도, 대상투자자, 운용회사)의 차이가 투자성과와 어떤 관련을 갖고 있는가를 분석함으로써 투자신탁에 내재하는 도덕적 위해의 문제를 노출시켜 보고자 한다. 이 논문에서는 우리나라 3대 투신사의 29개 주식형 펀드에 대한 1984. 2분기${\sim}$1993. 1분기의 분기수익률 자료를 사용하여 시장예측능력과 포트폴리오 선택 능력을 측정하였다. 시장예측능력의 척도로서 Henriksson & Merton(1981)이 제시한 척도를 사용하였으며, 선택 능력의 척도로서 Treynor & Black(1973)의 평가비율과 Fama(1972)의 순선택능력 을 사용하였다. 그 결과 자산운용을 담당하는 투신사와 주식편입비율 한도에 관계없이 주식형 펀드들의 시장예측능력과 선택능력 모두가 음의 값을 보이 고 있다. 예외적으로 외국인전용 펀드의 투자성과는 내국인을 대상으로 하는 투자신탁에 비하여 다소 우수한 성과를 보이고 있다. 표본으로 사용한 5개 외국인전용 펀드는 다른 펀드와 마찬가지로 음의 시장예측능력을 보여주고 있으나, 평가비율은 다른 포트폴리오들과는 달리 양의 값을 갖고 있고, 이들의 순선택능력은 음의 값을 보이긴 하지만 다른 포트폴리오보다 그 절대 값이 보다 작다. 이러한 결과는 외국인전용 펀드의 포트폴리오선택능력이 보다 우수하였다는 것을 의미한다. 외국인전용펀드가 보다 나은 선택능력을 보여준 이유는 이들이 투자자문위원회라는 감시 장치를 갖고 있기 때문인 것으로 판단된다. 환언하면 국내투자자용 펀드의 열등한 투자성과는 감시장치가 없는 데 따른 일종의 도덕적(道德的) 위해(危害)로 해석된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.