• Title/Summary/Keyword: 주성분 분석(PCA)

Search Result 656, Processing Time 0.026 seconds

A Study on Face Recognition based on Partial Least Squares (부분 최소제곱법을 이용한 얼굴 인식에 관한 연구)

  • Lee Chang-Beom;Kim Do-Hyang;Baek Jang-Sun;Park Hyuk-Ro
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.393-400
    • /
    • 2006
  • There are many feature extraction methods for face recognition. We need a new method to overcome the small sample problem that the number of feature variables is larger than the sample size for face image data. The paper considers partial least squares(PLS) as a new dimension reduction technique for feature vector. Principal Component Analysis(PCA), a conventional dimension reduction method, selects the components with maximum variability, irrespective of the class information. So, PCA does not necessarily extract features that are important for the discrimination of classes. PLS, on the other hand, constructs the components so that the correlation between the class variable and themselves is maximized. Therefore PLS components are more predictive than PCA components in classification. The experimental results on Manchester and ORL databases shows that PLS is to be preferred over PCA when classification is the goal and dimension reduction is needed.

Segmentation and Contents Classification of Document Images Using Local Entropy and Texture-based PCA Algorithm (지역적 엔트로피와 텍스처의 주성분 분석을 이용한 문서영상의 분할 및 구성요소 분류)

  • Kim, Bo-Ram;Oh, Jun-Taek;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.377-384
    • /
    • 2009
  • A new algorithm in order to classify various contents in the image documents, such as text, figure, graph, table, etc. is proposed in this paper by classifying contents using texture-based PCA, and by segmenting document images using local entropy-based histogram. Local entropy and histogram made the binarization of image document not only robust to various transformation and noise, but also easy and less time-consuming. And texture-based PCA algorithm for each segmented region was taken notice of each content in the image documents having different texture information. Through this, it was not necessary to establish any pre-defined structural information, and advantages were found from the fact of fast and efficient classification. The result demonstrated that the proposed method had shown better performances of segmentation and classification for various images, and is also found superior to previous methods by its efficiency.

Development of Monitoring System for the LNG plant fractionation process based on Multi-mode Principal Component Analysis (다중모드 주성분분석에 기반한 천연가스 액화플랜트의 성분 분리공정 감시 시스템 개발)

  • Pyun, Hahyung;Lee, Chul-Jin;Lee, Won Bo
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.19-27
    • /
    • 2019
  • The consumption of liquefied natural gas (LNG) has increased annually due to the strengthening of international environmental regulations. In order to produce stable and efficient LNG, it is essential to divide the global (overall) operating condition and construct a quick and accurate monitoring system for each operation condition. In this study, multi-mode monitoring system is proposed to the LNG plant fractionation process. First, global normal operation data is divided to local (subdivide) normal operation data using global principal component analysis (PCA) and k-means clustering method. And then, the data to be analyzed were matched with the local normal mode. Finally, it is determined the state of process abnormality through the local PCA. The proposed method is applied to 45 fault case and it proved to be more than 5~10% efficient compared to the global PCA and univariate monitoring.

A PCA-based MFDWC Feature Parameter for Speaker Verification System (화자 검증 시스템을 위한 PCA 기반 MFDWC 특징 파라미터)

  • Hahm Seong-Jun;Jung Ho-Youl;Chung Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2006
  • A Principal component analysis (PCA)-based Mel-Frequency Discrete Wavelet Coefficients (MFDWC) feature Parameters for speaker verification system is Presented in this Paper In this method, we used the 1st-eigenvector obtained from PCA to calculate the energy of each node of level that was approximated by. met-scale. This eigenvector satisfies the constraint of general weighting function that the squared sum of each component of weighting function is unity and is considered to represent speaker's characteristic closely because the 1st-eigenvector of each speaker is fairly different from the others. For verification. we used Universal Background Model (UBM) approach that compares claimed speaker s model with UBM on frame-level. We performed experiments to test the effectiveness of PCA-based parameter and found that our Proposed Parameters could obtain improved average Performance of $0.80\%$compared to MFCC. $5.14\%$ to LPCC and 6.69 to existing MFDWC.

Spatiotemporal Analysis of Retinal Waveform using Independent Component Analysis in Normal and rd/rd Mouse (독립성분분석을 이용한 정상 마우스와 rd/rd 마우스 망막파형의 시공간적 분석)

  • Ye, Jang-Hee;Kim, Tae-Seong;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.20-26
    • /
    • 2007
  • It is expected that synaptic construction and electrical characteristics In degenerate retina might be different from those In normal retina. Therefore, we analyzed the retinal waveform recorded with multielectrode array in normal and degenerate retina using principal component analysis (PCA) and Independent component analysis (ICA) and compared the results. PCA Is a well established method for retinal waveform while ICA has not tried for retinal waveform analysis. We programmed ICA toolbox for spatiotemporal analysis of retinal waveform. In normal mouse, the MEA spatial map shows a single hot spot perfectly matched with PCA-derived ON or OFF ganglion cell response. However In rd/rd mouse, the MEA spatial map shows numerous hot and cold spots whose underlying interactions and mechanisms need further Investigation for better understanding.

  • PDF

Speaker Identification Using Augmented PCA in Unknown Environments (부가 주성분분석을 이용한 미지의 환경에서의 화자식별)

  • Yu, Ha-Jin
    • MALSORI
    • /
    • no.54
    • /
    • pp.73-83
    • /
    • 2005
  • The goal of our research is to build a text-independent speaker identification system that can be used in any condition without any additional adaptation process. The performance of speaker recognition systems can be severely degraded in some unknown mismatched microphone and noise conditions. In this paper, we show that PCA(principal component analysis) can improve the performance in the situation. We also propose an augmented PCA process, which augments class discriminative information to the original feature vectors before PCA transformation and selects the best direction for each pair of highly confusable speakers. The proposed method reduced the relative recognition error by 21%.

  • PDF

Study on the applicability of the principal component analysis for detecting leaks in water pipe networks (상수관망의 누수감지를 위한 주성분 분석의 적용 가능성에 대한 연구)

  • Kim, Kimin;Park, Suwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.2
    • /
    • pp.159-167
    • /
    • 2019
  • In this paper the potential of the principal component analysis(PCA) technique for the application of detecting leaks in water pipe networks was evaluated. For this purpose the PCA was conducted to evaluate the relevance of the calculated outliers of a PCA model utilizing the recorded pipe flows and the recorded pipe leak incidents of a case study water distribution system. The PCA technique was enhanced by applying the computational algorithms developed in this study which were designed to extract a partial set of flow data from the original 24 hour flow data so that the effective outlier detection rate was maximized. The relevance of the calculated outliers of a PCA model and the recorded pipe leak incidents was analyzed. The developed algorithm may be applied in determining further leak detection field work for water distribution blocks that have more than 70% of the effective outlier detection rate. However, the analysis suggested that further development on the algorithm is needed to enhance the applicability of the PCA in detecting leaks by considering series of leak reports happening in a relatively short period.

Vehicle License Plate Recognition System using Color Information and PCA (칼라정보와 주성분분석법을 이용한 차량 번호판 인식에 관한 연구)

  • Han Soow-Han;Park Sung-Dae;Park Pan-Gon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.05a
    • /
    • pp.437-442
    • /
    • 2005
  • 본 연구에서는 칼라정보와 주성분분석법(principal component analysis : PCA)를 이용한 차량 번호판 인식시스템을 구성하였다. 먼저 입력된 차량 영상에서 번호판의 형태적 특징과 녹색 칼라 정보를 이용하여 번호판 영역을 추출하였으며, 추출된 번호판내의 문자 및 숫자의 위치적 특징을 이용하여 번호판의 종류(구형, 신형, 최신형)를 구분하였다. 이렇게 추출되고 구분된 번호판은 문자의 상대적 위치정보와 수평 및 수직 투영 정보를 함께 이용하여 각각의 문자영역을 분리 추출하였다. 추출된 문자영역은 주성분분석법을 이용하여 고유벡터를 추출한 후 문자 인식에 사용하였다. 본 논문의 실험과정에서는 다양한 시간대 환경에서 촬영된 주행 중인 자동차 320대의 자가용 차량영상에 대하여 실험하였으며 높은 번호판 추출률과 번호판종류 구분률 그리고 문자 인식률을 얻을 수 있었다.

  • PDF

Real-Time Face Detection and Tracking Using PCA (주성분분석을 통한 실시간 얼굴 검출 및 추적)

  • Park, Sang-Yong;Lee, Chang-Woo;Lee, Yun-Chul;Kim, Hang-Jun
    • Annual Conference of KIPS
    • /
    • 2002.04a
    • /
    • pp.717-720
    • /
    • 2002
  • 본 논문은 주성분분석(Principal Component Analysis, PCA)을 통하여 실시간 얼굴 검출 및 추적 방법을 제안한다. 제안된 방법은 얼굴 영역 검출과 추적의 두 단계로 구성되어 있다. 검출 단계에서는 피부색깔 모델과 움직임 정보를 이용하여 얼굴 후보 영역들을 검출하고, 검출된 후보 영역들을 주성분 분석을 통하여 검증한다. 추적 단계에서는 검출된 얼굴들 중에서 현재 추적 중인 얼굴과 가장 유사한 얼굴을 찾아 전체 영상의 중심에 위치하도록 pan/tilt 위에 놓여진 카메라를 제어하여 추적한다. 제안된 방법은 잡음이 많은 배경 상황에서도 존은 실험 결과를 보여준다.

  • PDF

An Analysis of Noise Robustness for Multilayer Perceptrons and Its Improvements (다층퍼셉트론의 잡음 강건성 분석 및 향상 방법)

  • Oh, Sang-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.159-166
    • /
    • 2009
  • In this paper, we analyse the noise robustness of MLPs(Multilayer perceptrons) through deriving the probability density function(p.d.f.) of output nodes with additive input noises and the misclassification ratio with the integral form of the p.d.f. functions. Also, we propose linear preprocessing methods to improve the noise robustness. As a preprocessing stage of MLPs, we consider ICA(independent component analysis) and PCA(principle component analysis). After analyzing the noise reduction effect using PCA or ICA in the viewpoints of SNR(Singal-to-Noise Ratio), we verify the preprocessing effects through the simulations of handwritten-digit recognition problems.