• Title/Summary/Keyword: 주성분 분석(PCA)

Search Result 656, Processing Time 0.027 seconds

Image Classification Using Grey Block Distance Algorithms for Principal Component Analysis and Kurtosis (주성분분석과 첨도에서의 그레이 블록 거리 알고리즘을 이용한 영상분류)

  • Hong, Jun-Sik
    • Annual Conference of KIPS
    • /
    • 2002.11a
    • /
    • pp.779-782
    • /
    • 2002
  • 본 논문에서는 주성분분석(principal component analysis; 이하 PCA) 및 첨도(Kurtosis)에서의 그레이 블록 거리 알고리즘(grey block algorithms; 이하 GBD)을 이용, 영상간의 거리를 측정하여 어느 정도 영상간의 상대적 식별을 용이하게 하여 영상 분류가 되는지 모의실험을 통하여 확인하고자 한다. 모의실험 결과로부터, PCA에서는 k가 9에서 상대적 식별이 불가능함을 보였고, 첨도에서는 k가 4까지만 블록을 택할 할 수 있음을 모의실험을 통하여 확인할 수 있었다.

  • PDF

Face Recognition by Combining Linear Discriminant Analysis and Radial Basis Function Network Classifiers (선형판별법과 레이디얼 기저함수 신경망 결합에 의한 얼굴인식)

  • Oh Byung-Joo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.41-48
    • /
    • 2005
  • This paper presents a face recognition method based on the combination of well-known statistical representations of Principal Component Analysis(PCA), and Linear Discriminant Analysis(LDA) with Radial Basis Function Networks. The original face image is first processed by PCA to reduce the dimension, and thereby avoid the singularity of the within-class scatter matrix in LDA calculation. The result of PCA process is applied to LDA classifier. In the second approach, the LDA process Produce a discriminational features of the face image, which is taken as the input of the Radial Basis Function Network(RBFN). The proposed approaches has been tested on the ORL face database. The experimental results have been demonstrated, and the recognition rate of more than 93.5% has been achieved.

  • PDF

Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis (주성분 분석법과 선형판별 분석법을 이용한 최적화된 방사형 기저 함수 신경회로망 분류기의 설계)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.735-740
    • /
    • 2012
  • In this paper, we introduce design methodologies of polynomial radial basis function neural network classifier with the aid of Principal Component Analysis(PCA) and Linear Discriminant Analysis(LDA). By minimizing the information loss of given data, Feature data is obtained through preprocessing of PCA and LDA and then this data is used as input data of RBFNNs. The hidden layer of RBFNNs is built up by Fuzzy C-Mean(FCM) clustering algorithm instead of receptive fields and linear polynomial function is used as connection weights between hidden and output layer. In order to design optimized classifier, the structural and parametric values such as the number of eigenvectors of PCA and LDA, and fuzzification coefficient of FCM algorithm are optimized by Artificial Bee Colony(ABC) optimization algorithm. The proposed classifier is applied to some machine learning datasets and its result is compared with some other classifiers.

Real-time monitoring for blending uniformity of trimebutine CR tablets using near-infrared and Raman spectroscopy (근적외분광분석법과 라만분광분석법을 이용한 트리메부틴말레인산 서방정의 혼합 과정 모니터링)

  • Woo, Young-Ah
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.519-526
    • /
    • 2011
  • Chemometrics using near-infrared (NIR) and Raman spectroscopy have found significant uses in a variety quantitative and qualitative analyses of pharmaceutical products in complex matrixes. Most of the pharmaceutical can be measured directly with little or no sample preparation using these spectroscopic methods. During pharmaceutical manufacturing process, analytical techniques with no or less sample preparation are very critical to confirm the quality. This study showed NIR and Raman spectroscopy with principal component analysis (PCA) was very effective for the blending processing control. It is of utmost importance to evaluate critical parameters related to quality of products during pharmaceutical processing. The blending is confirmed by off-line determination of active pharmaceutical ingredient (API) by a conventional method such as high performance liquid chromatography (HPLC) and UV spectroscopy. These analytical methods are time-consuming and ineffective for real time control. This study showed the possibility for the determination of blend uniformity end-point of CR tablets with the use of both NIR and Raman spectroscopy. The samples were acquired from six positions during blending processing with U-type blender from 0 to 30 min. Using both collected NIR and Raman spectral data, principal component analysis (PCA) was used to follow the uniformity of blending and finally determine the end-point. The variation of homogeneity of six samples during blending was clearly found and blend uniformity end-point was successfully confirmed in the domains of principal component (PC) scores.

Application of Principal Component Analysis in Automobile Body Assembly : Case Study (자동차 차체 조립공장에서 주성분 분석의 응용 : 사례 연구)

  • Lee, Myung-D.;Lim, Ik-Sung;Kim, Eun-Jung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.3
    • /
    • pp.125-130
    • /
    • 2008
  • Multivariate analysis is a rapidly expanding approach to data analysis. One specific technique in multivariate analysis is Principal Component Analysis (PCA). PCA is a statistical technique that linearly transform a given set of variables into a new set of composite variables. These new variables are orthogonal to each other and capture most of the information in the original variables. PCA is used to reduce the number of control points to be checked by measurement system. Therefore, the structure of the data set is simplified significantly It is also shown that eigenvectors obtained by conducting principal component analysis on the basis of the covariance matrix can be used to physically interpret the pattern of relative deformation for the points. This case study reveals the twisting deformation pattern of the underbody which is the largest mode of the total variation.

Improvement of MLLR Speaker Adaptation Algorithm to Reduce Over-adaptation Using ICA and PCA (과적응 감소를 위한 주성분 분석 및 독립성분 분석을 이용한 MLLR 화자적응 알고리즘 개선)

  • 김지운;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.539-544
    • /
    • 2003
  • This paper describes how to reduce the effect of an occupation threshold by that the transform of mixture components of HMM parameters is controlled in hierarchical tree structure to prevent from over-adaptation. To reduce correlations between data elements and to remove elements with less variance, we employ PCA (Principal component analysis) and ICA (independent component analysis) that would give as good a representation as possible, and decline the effect of over-adaptation. When we set lower occupation threshold and increase the number of transformation function, ordinary MLLR adaptation algorithm represents lower recognition rate than SI models, whereas the proposed MLLR adaptation algorithm represents the improvement of over 2% for the word recognition rate as compared to performance of SI models.

A review on robust principal component analysis (강건 주성분분석에 대한 요약)

  • Lee, Eunju;Park, Mingyu;Kim, Choongrak
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.2
    • /
    • pp.327-333
    • /
    • 2022
  • Principal component analysis (PCA) is the most widely used technique in dimension reduction, however, it is very sensitive to outliers. A robust version of PCA, called robust PCA, was suggested by two seminal papers by Candès et al. (2011) and Chandrasekaran et al. (2011). The robust PCA is an essential tool in the artificial intelligence such as background detection, face recognition, ranking, and collaborative filtering. Also, the robust PCA receives a lot of attention in statistics in addition to computer science. In this paper, we introduce recent algorithms for the robust PCA and give some illustrative examples.

Nonlinear Feature Extraction using Class-augmented Kernel PCA (클래스가 부가된 커널 주성분분석을 이용한 비선형 특징추출)

  • Park, Myoung-Soo;Oh, Sang-Rok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.7-12
    • /
    • 2011
  • In this papwer, we propose a new feature extraction method, named as Class-augmented Kernel Principal Component Analysis (CA-KPCA), which can extract nonlinear features for classification. Among the subspace method that was being widely used for feature extraction, Class-augmented Principal Component Analysis (CA-PCA) is a recently one that can extract features for a accurate classification without computational difficulties of other methods such as Linear Discriminant Analysis (LDA). However, the features extracted by CA-PCA is still restricted to be in a linear subspace of the original data space, which limites the use of this method for various problems requiring nonlinear features. To resolve this limitation, we apply a kernel trick to develop a new version of CA-PCA to extract nonlinear features, and evaluate its performance by experiments using data sets in the UCI Machine Learning Repository.

Efficient Speaker Identification based on Robust VQ-PCA (강인한 VQ-PCA에 기반한 효율적인 화자 식별)

  • Lee Ki-Yong
    • Journal of Internet Computing and Services
    • /
    • v.5 no.3
    • /
    • pp.57-62
    • /
    • 2004
  • In this paper, an efficient speaker identification based on robust vector quantizationprincipal component analysis (VQ-PCA) is proposed to solve the problems from outliers and high dimensionality of training feature vectors in speaker identification, Firstly, the proposed method partitions the data space into several disjoint regions by roust VQ based on M-estimation. Secondly, the robust PCA is obtained from the covariance matrix in each region. Finally, our method obtains the Gaussian Mixture model (GMM) for speaker from the transformed feature vectors with reduced dimension by the robust PCA in each region, Compared to the conventional GMM with diagonal covariance matrix, under the same performance, the proposed method gives faster results with less storage and, moreover, shows robust performance to outliers.

  • PDF

Analysis of Straight Line Detection Using PCA (주성분 분석을 이용한 직선 검출에 대한 분석)

  • Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2161-2166
    • /
    • 2015
  • This paper analyzes the straight line detection using the principal component analysis (PCA) and proposes its improved algorithm to which two new functions are added. The first function removes invalid pixels through the detected straight line and detects a line again. The second function detects lines from non-overlapped blocks, selects valid line candidates, and detects a valid line from pixels adjacent to each line candidate. The proposed algorithm detects a more accurate straight line with a low computation in comparison with the conventional algorithm in an image with somewhat refined lines.