• Title/Summary/Keyword: 주가 추세 예측

Search Result 220, Processing Time 0.028 seconds

Analysis of Difference in extreme rainfall according to bias-correction method on KMA national standard scenarios (기상청 국가표준시나리오의 편의보정방법에 따른 극한강우량의 차이 분석)

  • Choi, Jeonghyeon;Won, Jeongeun;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.195-195
    • /
    • 2018
  • 기상청에서는 영국 전지구기후모델인 HadGEM2-AO 기반의 영국 지역기후모델 HadGEM3-RA로부터 생산된 기후변화 시나리오를 기후변화예측을 위한 국가표준시나리오 자료로 제공하고 있다. 하지만, 기후모델의 특성상, 관측자료와 모의자료 간에는 통계적인 차이가 존재하며, 이러한 차이를 무시하고 원자료를 그대로 분석에 사용하는 것은 무의미 하다. 따라서 이러한 보정하기 위해서 주로 Quantile Mapping, Quantile Delta Mapping, Detrended Quantile Mapping 방법이 주로 사용된다. 하지만 어떠한 편의보정 방법이든 극값이 다수 존재하는 미래기간 모의자료를 보정할 때에는 외삽법(extrapolation)의 적용이 필요하다. 외삽법의 경우 constant correction 방법이 주로 적용된다. 본 연구에서는 기상청의 국가표준시나리오를 대상으로 이러한 편의보정 방법의 적용에 따른 미래 극한강우량의 차이를 분석하고자 하였다. 우선, 모의자료에서 우리나라 주요 기상관측지점에 해당하는 격자로부터 강우량자료를 추출하고 연최대강우시계열을 산정하였다. 그 후, 위의 세 가지 편의보정 방법을 이용하여 강우자료의 편의보정을 수행하였으며, constant correction 방법을 적용하여 이상치를 보정하였다. 그 후, 보정된 미래기간 모의자료의 추세를 분석하고, 이를 미래 확률강우량 산정방법인 scale-invariance 기법에 적용하여 미래 확률강우량을 산정하였다. 그 결과, 외삽법의 적용에 따라 편의보정 방법에 따라 미래 자료의 추세 또는 확률강우량의 변화패턴은 큰 차이를 나타내지 않았지만, 그 값 자체는 다소 차이가 있는 것으로 나타났다. 이러한 차이는 사용된 GCM과 RCM 조합으로 인한 오차와 더해져, 미래 예측결과의 불확실성으로 나타나기에 미래 극한강우량 예측을 위해서는 다수의 GCM, RCM 조합뿐만 아니라 다수의 편의보정 방법에 따른 결과도 함께 고려(ensemble)하여 결과를 나타내는 것이 필요할 것으로 판단된다.

  • PDF

Study of The Abnormal Traffic Detection Technique Using Forecasting Model Based Trend Model (추세 모형 기반의 예측 모델을 이용한 비정상 트래픽 탐지 방법에 관한 연구)

  • Jang, Sang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5256-5262
    • /
    • 2014
  • Recently, Distributed Denial of Service (DDoS) attacks, such as spreading malicious code, cyber-terrorism, have occurred in government agencies, the press and the financial sector. DDoS attacks are the simplest Internet-based infringement attacks techniques that have fatal consequences. DDoS attacks have caused bandwidth consumption at the network layer. These attacks are difficult to detect defend against because the attack packets are not significantly different from normal traffic. Abnormal traffic is threatening the stability of the network. Therefore, the abnormal traffic by generating indications will need to be detected in advance. This study examined the abnormal traffic detection technique using a forecasting model-based trend model.

세계각국의 타이어 수출경쟁력

  • Lee Gwang-Jae
    • The tire
    • /
    • s.102
    • /
    • pp.14-21
    • /
    • 1982
  • 본고는 OECD(Organization for Economic Cooperation and Development :경제협력개발기구)의 타이어 수출통계를 토대로 세계 타이어 산업의 수출경쟁력이 지금 어느정도의 수준에 달하고 있는지를 살펴본 것이다. 특히 일본의 타이어 산업도 수출주도형으로 되어 기업경영면에서 수출부문의 비중이 보다 높아지고 있다. 따라서 앞으로는 점차 타이어 수출동향이 기업경영을 좌우하게 될 것으로 예상된다. 이와같은 세계추세로 보아 향후 타이어 수출동향은 어떻게 예측될 것인지!! <편자주>

  • PDF

Adjusted Gasoline Demand Forecasts: Artificial Neural Networks Approach (보정된 가솔린 수요예측치: 인공신경망적 접근)

  • 염창선
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.2
    • /
    • pp.77-83
    • /
    • 2002
  • 본 연구에서는 가솔린 시계열 예측전문가들이 수요를 예측하고, 더 나아가 직감적으로 행하고 있는 보정과정을 자동화하기 위해 신경망을 사용한다. 가솔린 수요 예측분야에서 보정을 위해 사용되는 전형적인 판단요소는 정부 에너지 절약 정책, 에너지 산업의 파업, 공휴일 등이 있다. 주요 추세가 순환신경망에 의해 예측되고 이들 판단요소의 효과가 다층신경망에 의해 탐지되어 보정된다. 가솔린 수요에 대한 실험결과는 보정과정을 갖는 예측구조가 하나의 신경망을 사용하는 예측구조 보다 더 나은 예측력을 보였다. 그리고 본 연구에서 제시한 접근방법이 순환신경망이나 ARIMA 모델을 사용하는 것보다 더 나은 결과를 가졌다.

LSTF 주증기배관 파단사고 평가

  • 이규복;손상배
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.260-267
    • /
    • 1996
  • LSTF의 주증기배관 파단사고 실험(RUN SB-SL-01)에 대한 RELAP5/MOD2 해석결과를 제시하고, LSTF의 RUN SB-SL-01 실험결과 중에서 일차측과 이차측 사이의 열전달률에 촛점을 맞추어 증기발생기 이차측 및 일차계통의 압력, 온도 등과 같은 주요변수를 조사하여 RELAP5/MOD2코드의 성능을 평가하였다. 10% 주증기배관파단사고에 관한 최적 평가에서 주요 매개변수의 전체적 추세가 비교적 잘 예측되었다. 원자로압력용기 상층부에서 기포가 발생하는 기간 동안에는 계통 압력에서 작은 차이가 발생함을 알 수 있었는데, 압력차 발생은 가압기가 비어 있거나 원자로압력용기 상층부에서 기포가 발생하기 때문으로 판단된다.

  • PDF

Regression Tree based Modeling of Segmental Durations For Text-to-Speech Conversion System (Text-to-Speech 변환 시스템을 위한 회귀 트리 기반의 음소 지속 시간 모델링)

  • Pyo, Kyung-Ran;Kim, Hyung-Soon
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.191-195
    • /
    • 1999
  • 자연스럽고 명료한 한국어 Text-to-Speech 변환 시스템을 위해서 음소의 지속 시간을 제어하는 일은 매우 중요하다. 음소의 지속 시간은 여러 가지 문맥 정보에 의해서 변화하므로 제어 규칙에 의존하기 보다 방대한 데이터베이스를 이용하여 통계적인 기법으로 음소의 지속 시간에 변화를 주는 요인을 찾아내려고 하는 것이 지금의 추세이다. 본 연구에서도 트리기반 모델링 방법중의 하나인 CART(classification and regression tree) 방법을 사용하여 회귀 트리를 생성하고, 생성된 트리에 기반하여 음소의 지속 시간 예측 모델과, 자연스러운 끊어 읽기를 위한 휴지 기간 예측 모델을 제안하고 있다. 실험에 사용한 음성코퍼스는 550개의 문장으로 구성되어 있으며, 이 중 428개 문장으로 회귀 트리를 학습시켰고, 나머지 122개의 문장으로 실험하였다. 모델의 평가를 위해서 실제값과 예측값과의 상관관계를 구하였더니 음소의 지속 시간을 예측하는 회귀 트리에서는 상관계수가 0.84로 계산되었고, 끊어 읽는 경계에서의 휴지 기간을 예측하는 회귀 트리에서는 상관계수가 0.63으로 나타났다.

  • PDF

The past Inflow data Period Validit Analysis Using Seasonal ARIMA Model (계절 ARIMA모형을 이용한 과거 유입량 분석기간 적용성 연구)

  • Kim, Keun-Soon;Lee, Chung-Dea
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1410-1414
    • /
    • 2010
  • 최근 들어 가뭄과 국지성 호우 등의 기상이변이 지속적으로 발생하고 있으며, 이는 국민 삶의 발전과 향상에 밀접한 관계가 있는 것으로 전세계적으로 이에 대한 관심이 증가하고 있는 추세이다. 특히 댐의 효율적 관리와 안정적인 운영은 홍수피해 방지, 안정적인 용수공급과 같은 국민 생활과 밀접한 관계를 가지고 있어 수자원의 효율적인 운영과 이용은 장기적인 관점을 통하여 수립해야 한다. 이와 같이 댐 유입량의 예측은 유출모형의 목적 중 중요한 부분으로 확정론적 모형이 시 혹은 일유량과 같은 매우 짧은 시간의 유출을 예측하는데 주로 사용되지만 이는 매개변수의 추정이 불가능하거나 실제유역에서의 측정이 불가능 할 경우에는 모형적용에 한계가 있다. 이에 반해 추계학적 모형에 의한 유출예측은 장기간의 유출을 과거자료의 통계학적 특성변수를 매개변수로 하여 예측하는 방법으로 모형의 적용에 필요한 매개변수가 적어 그 적용성이 간편한 장점이 있다. 본 연구에서는 계절형 ARIMA모형을 적용하여 과거자료의 적용범위, 매개변수의 산정, 적합성 판정에 대하여 판단하고, 이 모형이 월유입량의 예측에 적합한지를 검토하였다.

  • PDF

Comparative Analysis of Reliability Predictions for Quality Assurance Factors in FIDES (FIDES의 품질 보증 인자에 대한 신뢰도 예측 비교 분석)

  • Cheol-Hwan Youn;Jin-Uk Seo;Seong-Keun Jeong;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.21-28
    • /
    • 2024
  • In light of the rapid development of the space industry, there has been increased attention on small satellites. These satellites rely on components that are considered to have lower reliability compared to larger-scale satellites. As a result, predicting reliability becomes even more crucial in this context. Therefore, this study aims to compare three reliability prediction techniques: MIL-HDBK-217F, RiAC-HDBK-217Plus, and FIDES. The goal is to determine a suitable reliability standard specifically for nano-satellites. Furthermore, we have refined the quality assurance factors of the manufacturing company. These factors have been adjusted to be applicable across various industrial sectors, with a particular focus on the selected FIDES prediction standard. This approach ensures that the scoring system accurately reflects the suitability for the aerospace industry. Finally, by implementing this refined system, we confirm the impact of the manufacturer's quality assurance level on the total failure rate.

Developing radar-based rainfall prediction model with GAN(Generative Adversarial Network) (생성적 적대 신경망(GAN)을 활용한 강우예측모델 개발)

  • Choi, Suyeon;Sohn, Soyoung;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.185-185
    • /
    • 2021
  • 기후변화로 인한 돌발 강우 등 이상 기후 현상이 증가함에 따라 정확한 강우예측의 중요성은 더 증가하는 추세이다. 전통적인 강우예측의 경우 기상수치모델 또는 외삽법을 이용한 레이더 기반 강우예측 기법을 이용하며, 최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 개발되고 있다. 기존 머신러닝을 이용한 강우예측 모델의 경우 주로 시계열 이미지 예측에 적합한 2차원 순환 신경망 기반 기법(Convolutional Long Short-Term Memory, ConvLSTM) 또는 합성곱 신경망 기반 기법(Convolutional Neural Network(CNN) Encoder-Decoder) 등을 이용한다. 본 연구에서는 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용해 미래 강우예측을 수행하도록 하였다. GAN 방법론은 이미지를 생성하는 생성자와 이를 실제 이미지와 구분하는 구별자가 경쟁하며 학습되어 현재 이미지 생성 분야에서 높은 성능을 보여주고 있다. 본 연구에서 개발한 GAN 기반 모델은 기상청에서 제공된 2016년~2019년까지의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시키고, 2020년 레이더 이미지 자료를 이용해 단기강우예측을 모의하였다. 또한, 기존 머신러닝 기법을 기반으로 한 모델들의 강우예측결과와 GAN 기반 모델의 강우예측결과를 비교분석한 결과, 본 연구를 통해 개발한 강우예측모델이 단기강우예측에 뛰어난 성능을 보이는 것을 확인할 수 있었다.

  • PDF

A Study on b-Traffic Service Platform based on Open data Infrastructure (공공데이터 인프라기반 b-Traffic 서비스 플랫폼 연구)

  • Son, Seok-Hyun;Song, Seok-Hyun;Shin, Hyo-Seop
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.117-118
    • /
    • 2014
  • 최근 공공기관의 공공데이터 제공이 활성화 되고 있으며, 이를 활용한 응용서비스에 대한 요구도 증가하고 있는 추세이다. 현재 교통정보예측 플랫폼은 실시간 교통정보 또는 과거 교통정보이력을 분석하여 미래의 교통량이나 도착시간정보를 제공하고 있으나 날씨, 사고 등과 같은 미래 교통정보에 즉각적인 영향을 줄 수 있는 요소를 배제하고 있어 높은 신뢰도를 확보하기 어렵다. 본 논문에서는 교통정보예측에 영향을 주는 요소인 기상, 사고, 교통정보와 같은 공공데이터를 효율적으로 수집 저장 처리할 수 있는 저장방식 및 신뢰도 높은 교통정보를 예측할 수 있는 예측기술이 포함된 b-Traffic 서비스 플랫폼을 제시한다.

  • PDF