• Title/Summary/Keyword: 주가 예측 모델

검색결과 1,789건 처리시간 0.034초

지역분할방법에 의한 ISCST3모델로 수도권지역에서 $SO_2$ 농도 예측 연구 (A Study on the Prediction of $SO_2$ Concentrations by a Regional Segment ISCST3 Model in the Seoul Metropolitan Area)

  • 구윤서;전경석;최한영;신봉섭;신동윤;이정주
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 1999년도 추계학술대회 논문집
    • /
    • pp.407-408
    • /
    • 1999
  • 본 연구에서는 서울, 인천, 수원을 포함한 수도권 전지역을 대상으로 SO$_2$ 농도를 가우시안모델인 ISCST3(Industrial Source Complex for Short Term-3)로 예측하고자 한다. ISCST3 모델의 적용 영역이 넓으면 모델영역 내에서 기상조건이 상이하기 때문에 지금까지 이루어진 대부분의 연구들은 공간적으로 제한된 지역을 대상으로 해왔다.(중략)

  • PDF

사고 분석 및 예측 모델 연구 (A Study of the Analysis and Prediction Model for the Disaster)

  • 박길주;이광주
    • 한국재난정보학회:학술대회논문집
    • /
    • 한국재난정보학회 2023년 정기학술대회 논문집
    • /
    • pp.59-60
    • /
    • 2023
  • 실시간으로 수집되는 사고 정보를 분석하여 해당 사고에 대한 분석적이고 예측적 서비스를 제공하는 것은 중요하다. 특히 발생이 진행 중인 사고에 대한 원인과 피해에 대한 규모 예측은 대응에 강도를 가늠할 수 있는 체계로 재난 발생에 대한 예측과 발생 초기 재난에 대한 분석을 위하여 뉴스 정보와 국민재난안전포털의 안전관리일일상황 정보를 분석할 필요가 있다.

  • PDF

시뮬레이션을 이용한 반도체 수율 예측 모델

  • 박항엽
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1994년도 추계학술발표회 및 정기총회
    • /
    • pp.31-31
    • /
    • 1994
  • 반도체 산업에서 반도체 수율(yeild) 예측은 상당히 중요한 요소로써 고려되고 있다. 정확한 수율 예측은 반도체 공정상에서 문제점을 찾아 개선하는데 도움을 주는 한편, 공정에의 투입량을 산출하는데에도 중요한 요인이 되고 있다. 지난 30년간 반도체 산업의 경향은 점차로 칩(chip)의 크기가 증가하는 방향으로 전개되어 왔고, 이에 따라 수율 예측은 웨이퍼(wafer)내의 결점(defect)수와 칩의 크기외에 결점이 얼마나 웨이퍼내에 모였는가를 나타내는 클러스터 지표(cluster index)가 중요한 파라미터로 제시되고 있다. 본 논문은 머스트니스라는 통신 분야의 개념을 이용하여 새로운 클러스터 지표를 제시하고, 시뮬레이션 기법을 이용한 웨이퍼 내의결점 분포의 자료를 통하여 새로운 클러스터 지표의 특징 및 수율에 따른 패턴을 보여주고자 한다. 아울러 회귀 분석(regression analysis) 기법을 이용하여 수율 예측 모델을 제시하고 기존의 예측 모델과의 차이점을 분석하고자 한다.

  • PDF

시계열 예측을 고려한 속성 선택 딥러닝 모델 (Feature Selection Deep Learning Model considering Time Series Prediction)

  • 박광호;;류근호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.509-512
    • /
    • 2021
  • 최근 다양한 시계열 데이터의 분석이 딥러닝 방법을 통하여 수행되고 있다. 주로 RNN과 LSTM을 이용하여 많은 시계열 예측이 이루어지고 있다. 하지만 이러한 예측모델을 생성하는데 가장 중요한 것은 어떠한 변수를 얼마나 사용하는지가 중요하다. 이에 대하여, 본 연구에서는 3개의 신경망을 적용하여, 속성을 선택하는 Selection MLP, 속성에 가중치를 부여하는 Extraction MLP 그리고 예측을 진행하는 Prediction MLP로 이루어진 MLP-SEL 구조를 제안한다. 비교를 위하여 다른 순환 신경망에 대하여 시계열 데이터에 대한 예측을 진행하였으며, 그 결과 우리가 제안한 MLP-SEL 모델의 시계열 예측이 좋은 성능을 보였다.

Time-Invariant Stock Movement Prediction After Golden Cross Using LSTM

  • Sumin Nam;Jieun Kim;ZoonKy Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권8호
    • /
    • pp.59-66
    • /
    • 2023
  • 골든크로스를 흔히 매수의 신호로 인식하지만, 주식시장은 변동성이 매우 크기에 골든크로스만으로 주식의 등락 여부를 예상하고 의사결정을 내리기에는 무리가 있다. 마찬가지로, 이러한 주가 데이터의 불확실성은 기존의 시계열 기반의 예측을 더욱 어렵게 한다. 본 논문에서는 골든크로스를 하나의 사건으로 인식하여, time-invariant 한 접근을 시도하고자 한다. LSTM 신경망 기법을 사용하여 골든크로스 이후의 주가 변화율을 예측하고, 기존의 시계열 분석에서 도출한 성능과 종목별로 비교한다. 또한, 0을 기준으로 한 주가 변화율의 등락을 혼동행렬로 분류하여 일반화 분류 성능을 입증한다. 최종적으로 본 논문은 예측 정밀도가 83%인 모델을 제안하였다. 골든크로스가 나타날 때 모든 상황에서 매수를 결정하기보다 모델을 활용하여 투자자의 투자 자본 손실을 방지할 수 있다.

데이터 증강 기반 회귀분석을 이용한 N치 예측 (A Prediction of N-value Using Regression Analysis Based on Data Augmentation)

  • 김광명;박형준;이재범;박찬진
    • 지질공학
    • /
    • 제32권2호
    • /
    • pp.221-239
    • /
    • 2022
  • 플랜트, 토목 및 건축 사업에서 말뚝 설계 시 어려움을 겪는 주된 요인은 지반 특성의 불확실성이다. 특히 표준관입시험을 통해 구한 N치가 설계 시 주요 입력값이나 짧은 입찰기간과 광범위한 구역에서 다수의 현장시험을 실시하는 것은 실제적으로 어려운 상황이다. 본 연구에서는 인공지능(AI)을 가지고 회귀분석을 적용하여 N치를 예측하는 연구를 수행하였으며, 최소한의 시추자료를 학습시킨 후 표준관입시험을 실시하지 못한 곳에서 N치를 예측하는데 그 목적이 있다. AI의 학습 성능을 높이기 위해서는 빅 데이터가 중요하며, 금회 연구 시 부족한 시추자료를 빅 데이터화 하는데 '원형증강법'을 적용하여 시추반경 2 m까지 가상 N치를 생성시키는 작업을 선행하였다. AI 모델 중 인공신경망, 의사결정 나무, 오토 머신러닝을 각각 적용하였으며 이 중 최적의 모델을 선택하였다. 최적의 모델을 선택하는 방법은 세 가지의 예측된 AI 모델 중 최소 오차값을 가지는 것이다. 이를 위해 폴란드, 인도네시아, 말레이시아에서 수행한 6개 프로젝트를 대상으로 표준관입시험의 실측N치와 AI의 예측N치를 비교하여 타당성 여부를 연구하였고, 연구 결과 AI 예측값에 대한 신뢰도가 높은 것으로 분석되었다. AI 예측값을 가지고 미시추 구간에서 지반특성을 파악 할 수 있었으며 3차원 N치 분포도를 사용하면 최적의 구조물 배치가 가능함을 확인하였다.

취수원 수질예측을 위한 성층 물리변수 활용 데이터 기반 모델링 연구 (A Study on Data-driven Modeling Employing Stratification-related Physical Variables for Reservoir Water Quality Prediction)

  • 장현준;정지영;주경원;이충성;김성훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.143-143
    • /
    • 2023
  • 최근 대청댐('17), 평림댐('19) 등 광역 취수원에서 망간의 먹는 물 수질기준(0.05mg/L 이하) 초과 사례가 발생되어, 다수의 민원이 제기되는 등 취수원의 망간 관리 중요성이 부각되고 있다. 특히, 동절기 전도(Turn-over)시기에 고농도 망간이 발생되는 경우가 많은데, 현재 정수장에서는 망간을 처리하기 위해 유입구간에 필터를 설치하고 주기적으로 교체하는 방식으로 처리하고 있다. 그러나 단기간에 고농도 망간 다량 유입 시 처리용량의 한계 등 정수장에서의 공정관리가 어려워지므로 사전 예측에 의한 대응 체계 고도화가 필요한 실정이다. 본 연구는 광역취수원인 주암댐을 대상으로 망간 예측의 정확도 향상 및 예측기간 확대를 위해 다양한 머신러닝 기법들을 적용하여 비교 분석하였으며, 독립변수 및 초매개변수 최적화를 진행하여 모형의 정확도를 개선하였다. 머신러닝 모형은 수심별 탁도, 저수위, pH, 수온, 전기전도도, DO, 클로로필-a, 기상, 수문 자료 등의 독립변수와 화순정수장에 유입된 망간 농도를 종속변수로 각 변수에 해당하는 실측치를 학습데이터로 사용하였다. 그리고 데이터기반 모형의 정확도를 개선하기 위해서 성층의 수준을 판별하는 지표로서 PEA(Potential Energy Anomaly)를 도입하여 데이터 분석에 활용하고자 하였다. 분석 결과, 망간 유입률은 계절 주기에 따라 농도가 달라지는 것을 확인하였고 동절기 전도시점과 하절기 장마기간 난류생성 시기에 저층의 고농도 망간이 유입이 되는 것을 분석하였다. 또한, 두 시기의 망간 농도의 변화 패턴이 상이하므로 예측 모델은 각 계절별로 구축해 학습을 진행함으로써 예측의 정확도를 향상할 수 있었다. 다양한 머신러닝 모델을 구축하여 성능 비교를 진행한 결과, 동절기에는 Gradient Boosting Machine, 하절기에는 eXtreme Gradient Boosting의 기법이 우수하여 추론 모델로 활용하고자 하였다. 선정 모델을 통한 단기 수질예측 결과, 전도현상 발생 시기에 대한 추종 및 예측력이 기존의 데이터 모형만 적용했을 경우대비 약 15% 이상 예측 효율이 향상된 것으로 나타났다. 본 연구는 머신러닝 모델을 활용한 망간 농도 예측으로 정수장의 신속한 대응 체계 마련을 지원하고, 수처리 공정의 효율성을 높이는 데 기여할 것으로 기대되며, 후속 연구로 과거 시계열 자료 활용 및 물리모형과의 연결 등을 통해 모델의 신뢰성을 제고 할 계획이다.

  • PDF

경향성 변화에 대응하는 딥러닝 기반 초미세먼지 중기 예측 모델 개발 (Development of a Deep Learning-based Midterm PM2.5 Prediction Model Adapting to Trend Changes)

  • 민동준;김혜림;이상근
    • 정보처리학회 논문지
    • /
    • 제13권6호
    • /
    • pp.251-259
    • /
    • 2024
  • 초미세먼지, 특히 지름이 2.5㎛ 이하인 PM2.5는 인체 건강과 경제에 큰 피해를 주는 오염물질이다. 본 연구는 대한민국 서울 지역을 중심으로, 2017년부터 2022년까지 자료를 수집하여 PM2.5 데이터 분석 및 데이터 경향성 변화 추이를 분석하고, PM2.5 중기 예측 모델을 개발하는 것을 목표로 한다. 수집, 생산된 대기질 및 기상 데이터, 재분석 데이터, 수치모델 예측 데이터를 바탕으로, 모델을 학습하고 이를 통합한 경향성 변화에도 대응할 수 있는 앙상블 기법을 제안한다. 본 연구에서 제안하는 앙상블 기법은 PM2.5 농도 예측 성능 면에서 기존 모델 대비 미래 D+3~D+6 예측일 F1 Score 기준 평균 2019년 약 42.16%, 2021년 약 58.92%, 2022년 약 34.79% 높은 성능을 보였다. 제안한 모델은 변화하는 환경 조건에도 성능을 유지함으로써 안정적인 예측을 가능하게 하며, 기존 딥러닝 기반 PM2.5 단기 예측보다 먼 예측을 수행하는 중기 예측 모델을 제시한다.

자기회귀 모델과 신경망 모델을 이용한 복잡한 지형 내 항만에서의 파고 및 하역중단 예측 (Wave Height and Downtime Event Forecasting in Harbour with Complex Topography Using Auto-Regressive and Artificial Neural Networks Models)

  • 이진학;류경호;백원대;정원무
    • 한국해안·해양공학회논문집
    • /
    • 제29권4호
    • /
    • pp.180-188
    • /
    • 2017
  • 최근에 기후변화로 인해 너울성 고파 등 이상고파의 출현빈도가 높아지고 항만에서의 하역중단이 증가할 가능성이 커지고 있다. 하역중단을 최소화할 수 있도록 방파제(breakwater) 등을 추가적으로 건설하여 정온도(tranquility)를 향상시키는 것도 매우 중요하지만, 하역중단시점을 미리 예보함으로써 항만 운영을 효율적으로 하는 것도 또한 중요하다. 본 연구에서는 효율적인 항만 운영을 위하여 하역중단시점을 사전에 예보할 수 있도록 바람 예보자료를 이용하여 항외 주요 지점에서의 파랑자료를 추산하고, 복잡한 지형을 가진 항내 주요 지점에 대해서는 장기 관측을 실시하여 파랑자료를 수집한 후, 광역 계산지점에서의 파고와 항내 관측지점에서의 파고 사이의 관계를 자기회귀모델(auto-regressive model)과 인공신경망(artificial neural networks) 모델을 이용하여 바람예보자료를 이용한 수치실험 결과만으로 항내 파고를 예측하고, 하역중단시점을 예보할 수 있는 방법을 제안하였다. 제안방법의 적용성을 평가하기 위하여 포켓(pocket) 형상의 비교적 복잡한 지형 조건을 가진 포항신항 내 파랑관측지점에서의 파고 예측 및 하역중단시점을 예측하였으며, 그 결과를 관측자료와 비교하여 제안 방법의 성능을 검증하였다. 인공신경망 모델의 파고 예측결과를 자기회귀모델에 의한 파고 예측결과와 비교할 때, 인공신경망 모델의 예측결과가 관측자료와의 상관계수가 높고 RMS 오차가 작음을 알 수 있었고, 하역중단시점의 예측에 있어서도 인공신경망의 결과가 자기회귀모델의 결과보다 상대적으로 우수함을 알 수 있었다.

미계측유역 유사량 예측 모델을 이용한 비유사량 특성분석 (Analysis of specific sediment yield characteristics using sediment prediction models developed for ungauged watersheds)

  • 박상덕;안태진;임경재;김정곤;신승숙
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.33-33
    • /
    • 2017
  • 수문모형들은 유역차원의 저감대책 수립 및 평가에 유용하게 사용될 수 있고 이를 활용한 합리적인 예측이 가능하다. 한국의 미계측 유역에 대한 유사발생량 예측을 모델을 개발하였다. 본 연구에서 개발한 예측모형의 특징은 신뢰할 수 있는 관측 자료를 활용하여 단계별 다중회귀분석을 이용하여 매개변수를 결정하였으며, 최소한의 입력자료를 이용하여 전국 규모의 연평균 유사발생량을 예측할 수 있다는 것이다. 본 연구에서 개발된 모형을 활용하여 4대강 유역의 중권역별 유사량을 추정하였다. 수자원장기 종합에서 사용한 중권역별 강우 자료를 활용하여 모의를 수행하였다. 2001년부터 2015년 까지 15년까지 모의결과 4대강 유역 전체적으로 연 강우량의 변동에 따라 유사발생량도 증감하는 패턴을 나타내고 있으며, 그 주기는 약 8년 정도로 추정되었다. 4대강 주요 중권역을 대상으로 2010년에 추정된 비유사량을 K-DRUM 예측값 및 유량조사사업단 추정값과 비교하여 모델의 활용성을 검토하였다. 유사량 예측의 불확실성을 감안할 때 본 연구에서 개발된 모델을 이용하여 1차 스크리닝 수준에서 미계측 유역에 대한 비유사량 예측이 가능할 것으로 판단되며, 향후 미계측 유역에 대한 유사관리계획 수립에 활용될 수 있을 것으로 판단된다.

  • PDF