본 연구에서는 주가 결정 방법이 주가 경향 예측에 미치는 영향을 확인하기 위한 분석을 수행한다. 주식시장에서 성공적인 투자를 위해서는 주가의 상승과 하락을 정확하게 예측하는 것이 큰 도움이 되므로 주가 경향 예측에 관해 많은 연구가 진행되고 있다. 예를 들어 근래에는 SNS나 뉴스의 내용을 텍스트 마이닝을 이용하여 분석하고, 이를 이용한 주가 등락의 예측 방법이 제안되었으며 다양한 기계학습 기법들이 활용되고 있다. 그러나 주가의 경향을 '상승' 또는 '하락'으로 결정하는 방법은 제대로 분석된 적 없으며 일반적으로 쓰던 방법을 답습하고 있다. 이에 본 논문에서는 주가 경향 결정 방법을 이동평균을 이용해 일반화하고 주가 경향 결정 방법이 예측 정확도에 미치는 영향을 분석한다. 분석 결과, 다음 날의 주가 경향을 예측하는 경우, 주가 경향 결정방법에 따라 예측 정확도가 47%까지 차이가 남을 발견하였다. 또한 경향 결정에 사용되는 기준값 윈도우의 크기와 예측의 정확도는 비례 관계이며, 대상값 윈도우의 크기와 정확도는 반비례 관례임을 알 수 있었다.
주식 투자는 재테크의 하나로 금리 인하와 비과세 제도의 축소에 따라 주목을 받기 시작했다. 그러나 투자에 전문적인 지식이 필요할 뿐 아니라 위험 부담이 크다는 단점이 있다. 따라서 주가 경향의 정확한 예측은 개인투자자에게나 주식 투자 관련 서비스를 제공하는 회사에 중요한 능력이며, 더욱 정확한 예측을 위한 연구가 활발히 진행 중이다. 그러나 예측 연구들의 공정한 비교와 최고의 예측 모델을 얻기 위한 하이퍼-파라미터의 최적화에는 예측 모델의 성능을 정확하게 평가하는 방법이 필요한데, 지금까지 예측 모델의 성능 평가에 대한 연구는 미진한 상태이며, 기존 방법들을 그대로 답습하고 있는 실정이다. 이에 본 논문에서는 주가 예측 모델 성능 평가를 측정기준과 데이터 구성의 관점에서 분석하고, 예측 불균형 비율을 이용한 주가 경향 예측 모델의 공정한 성능 평가 방법을 제안한다.
본 논문에서 기술하는 연구는 한국종합주가지수(KOSPI)의 장기적 변동 경향에 대한 확률적 예측 시스템을 제안한다. 제안된 방법론은 이미 단백질 상호작용 예측 시스템과 스트레스 확률 예측 시스템 등에 적용되어 유효성이 입증된 방법으로, 이미 알려진 데이터를 바탕으로 다양한 요인들의 가능한 모든 조합에 대한 경우의 수를 고려한 학습 결과에 기반하여 새로이 주어진 대상의 요인들을 분석해서 학습시 사용된 특정 군(class)에 속할지의 여부를 확률적으로 나타내준다. 이 방법론을 구현하기 위해 실제 과거 주가지수 데이터를 수집하여 CI(Combination Interrelation)행렬을 구현하였으며, 현재 진행중인 검증작업에 대해서도 기술하였다.
주식 가격의 결정은 시장 내 수요와 공급에 의해서 결정되며, 가격 변동은 일정한 패턴으로 움직인다고 가정한다. 이러한 패턴을 찾아내어 주식가격의 변동을 예측하는 분석 방법을 기술적 분석이라 한다. 기술적 분석에서는 수요.공급의 변화에 의해 추세가 변동되고, 모든 형태의 주가모형은 반복하려는 경향을 보인다고 가정한다. 이러한 가정하에 본 논문에서는 한국주가지수 200의 과거지수와 거래량을 분석하고, 일정한 패턴을 이용하여 미래의 지수를 예측하는 방법을 연구하였다.
발전 연료로서의 활용 가치가 높은 중잔유의 효과적인 활용을 위해 중잔유의 가스화 성능에 영향을 주는 주요 변수들인 산소 공급비, 증기 공급비 및 가스화기 온도를 변화시키면서 중잔유 가스화에 미치는 영향을 파악하였으며 가스화 성능을 예측하였다. 산소량은 0.5~2.0의 산소/연료비 범위에서 변화시켰고 증기량은 0.1~2.0의 증기/연료비에서 변화시켰으며 가스화기 온도는 600~200$0^{\circ}C$의 범위에서 변화시켰다. 대상 연료는 국내산 아스팔트이며 산소-증기, 산소-온도 및 증기-온도의 조합으로 동시 변화시킬 때의 가스화에 미치는 영향을 살펴보았다. 산소량이 증가할수록 CO와 H$_2$ 생성량은 증가한 후 감소하는 경향을 나타내었으며 증기량이 증가할수록 H$_2$ 생성량은 130$0^{\circ}C$부근까지 증가한 후 130$0^{\circ}C$ 이상에서는 서서히 감소하였으며, CO 생성량은 증가하는 경향을 나타내었다. 국내산 아스팔트의 경우 산소/연료비 0.92~1.01, 증기/연료비 0.18~0.49 및 가스화기 온도 1250~132$0^{\circ}C$의 영역에서 가스화 성능이 가장 좋은 것으로 나타났다.
이상기후로 인해 돌발적이고 국지적인 호우 발생의 빈도가 증가하게 되면서 짧은 선행시간(~3 시간) 범위에서 수치예보보다 높은 정확도를 갖는 초단시간 강우예측자료가 돌발홍수 및 도시홍수의 조기경보를 위해 유용하게 사용되고 있다. 일반적으로 초단시간 강우예측 정보는 레이더를 활용하여 외삽 및 이동벡터 기반의 예측기법으로 산정한다. 최근에는 장기간 레이더 관측자료의 확보와 충분한 컴퓨터 연산자원으로 인해 레이더 자료를 활용한 인공지능 심층학습 기반(RNN(Recurrent Neural Network), CNN(Convolutional Neural Network), Conv-LSTM 등)의 강우예측이 국외에서 확대되고 있고, 국내에서도 ConvLSTM 등을 활용한 연구들이 진행되었다. CNN 심층신경망 기반의 초단기 예측 모델의 경우 대체적으로 외삽기반의 예측성능보다 우수한 경향이 있었으나, 예측시간이 길어질수록 공간 평활화되는 경향이 크게 나타나므로 고강도의 뚜렷한 강수 특징을 예측하기 힘들어 예측정확도를 향상시키는데 중요한 소규모 기상현상을 왜곡하게 된다. 본 연구에서는 이러한 한계를 보완하기 위해 적대적 생성 신경망(Generative Adversarial Network, GAN)을 적용한 초단시간 예측기법을 활용하고자 한다. GAN은 생성모형과 판별모형이라는 두 신경망이 서로간의 적대적인 경쟁을 통해 학습하는 신경망으로, 데이터의 확률분포를 학습하고 학습된 분포에서 샘플을 쉽게 생성할 수 있는 기법이다. 본 연구에서는 2017년부터 2021년까지의 환경부 대형 강우레이더 합성장을 수집하고, 강우발생 사례를 대상으로 학습을 수행하여 신경망을 최적화하고자 한다. 학습된 신경망으로 강우예측을 수행하여, 국내 기상청과 환경부에서 생산한 레이더 초단시간 예측강우와 정량적인 정확도를 비교평가 하고자 한다.
중국 우한발 코로나 19 바이러스로 인하여 세계 경제가 침체하여, 미국연방준비제도를 비롯한 대부분 국가에서는 통화량을 늘려 경기를 부양하는 정책을 내놓았다. 주식 투자자들 대부분은 기업에 대한 재무제표 분석이 없이 유명 유튜버의 추천종목이나 지인의 말만 듣고 투자하는 경향이 있어서 주식투자의 손실 가능성이 크다. 따라서, 본 연구에서는 기존 자동매매 조건에서 발전된 인공지능 딥러닝 기법을 이용하여 주가에 영향을 미치는 거시지표를 분석하고 예측하여 주가에 미치는 상관관계를 통한 개별주가예측에 가중치를 부여하고 주가를 예측한다. 또한, 주가는 실시간 증시뉴스에 민감하게 반응하기 때문에 증시뉴스 텍스트 마이닝을 통하여 인공지능으로 예측된 주가에 가중치를 반영하여 더 정확한 주가 예측을 하여 주식 투자자에게 매매의 판단 근거를 제공하여 건전한 주식투자가 되도록 이바지하였다.
주식투자의 대중화, 관심의 증가에 따라 주가예측의 중요성이 증대되고 있다. 주가의 변화는 어떤 경향이나 패턴에 의해 움직인다고 가정할 때, 과거의 주가분석을 통해 이들의 변화를 잘 설명할 수 있는 모델의 구성이 가능할 것이다. 동적인 현상을 반영하는 최적의 모델이 구성된다면 이를 통해 향후의 일정기간의 주가의 운동양태의 예측이 가능할 것이다. 본 연구에서는 주가와 같은 템포랄(temporal) 데이터를 잘 설명할 수 있는 모델결정에 대한 방법론으로서 오토마타 기반의 모델을 가정한다. 모델의 최적 상태 수를 결정하기 위한 기준으로서 베이지안정보기준(BIC : Bayesian Information Criterion) 근사법을 사용한다. 베이지안정보기준의 유효성을 살펴보고 베이지안정보기준을 실제 주가데이터 모델의 상태 수 결정과정에 적용하여 모델을 생성한 후 결정된 모델을 통하여 일정 기간의 일별주가곡선의 운동양태를 예측한다. 실제의 주가곡선에 적용하여 모델의 유효성을 확인하였고 예측 주가곡선의 운동양태가 실제 주가 곡선과 유사함을 확인하였다.
초미세먼지, 특히 지름이 2.5㎛ 이하인 PM2.5는 인체 건강과 경제에 큰 피해를 주는 오염물질이다. 본 연구는 대한민국 서울 지역을 중심으로, 2017년부터 2022년까지 자료를 수집하여 PM2.5 데이터 분석 및 데이터 경향성 변화 추이를 분석하고, PM2.5 중기 예측 모델을 개발하는 것을 목표로 한다. 수집, 생산된 대기질 및 기상 데이터, 재분석 데이터, 수치모델 예측 데이터를 바탕으로, 모델을 학습하고 이를 통합한 경향성 변화에도 대응할 수 있는 앙상블 기법을 제안한다. 본 연구에서 제안하는 앙상블 기법은 PM2.5 농도 예측 성능 면에서 기존 모델 대비 미래 D+3~D+6 예측일 F1 Score 기준 평균 2019년 약 42.16%, 2021년 약 58.92%, 2022년 약 34.79% 높은 성능을 보였다. 제안한 모델은 변화하는 환경 조건에도 성능을 유지함으로써 안정적인 예측을 가능하게 하며, 기존 딥러닝 기반 PM2.5 단기 예측보다 먼 예측을 수행하는 중기 예측 모델을 제시한다.
본 논문에서는 시계열 데이터인 주가의 변동 패턴을 학습하고, 주가 가격을 예측하기 적합한 주가 예측 딥러닝 모델을 제시하고 평가하였다. 일반신경망에 시계열 개념이 추가되어 은닉계층에 이전 정보를 기억시킬 수 있는 순환신경망이 시계열 데이터인 주가 예측 모델로 적합하다. 순환신경망에서 나타나는 기울기 소멸문제를 해결하며, 장기의존성을 유지하기 위하여, 순환신경망의 내부에 작은 메모리를 가진 LSTM을 사용한다. 또한, 순환신경망의 시계열 데이터의 직전 패턴 기반으로만 학습하는 경향을 보이는 한계를 해결하기 위하여, 데이터의 흐름의 역방향에 은닉계층이 추가되는 양방향 LSTM 순환신경망을 이용하여 주가예측 모델을 구현하였다. 실험에서는 제시된 주가 예측 모델에 텐서플로우를 이용하여 주가와 거래량을 입력 값으로 학습을 하였다. 주가예측의 성능을 평가하기 위해서, 실제 주가와 예측된 주가 간의 평균 제곱근 오차를 구하였다. 실험결과로는 단방향 LSTM 순환신경망보다, 양방향 LSTM 순환신경망을 이용한 주가예측 모델이 더 작은 오차가 발생하여 주가 예측 정확성이 향상되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.