• Title/Summary/Keyword: 주가영향력

Search Result 28, Processing Time 0.021 seconds

Research for the improvement of the accuracy of analysts' profit forecast (증권사 애널리스트 이익예측치의 정확성 개선을 위한 연구)

  • Seo, Won-woo;Choi, Dae-young;Kim, Myung-soo;Kim, Jong-bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.409-411
    • /
    • 2014
  • There have been various advanced research on how changes of analysts' profit forecasts affect stock prices. Also, consensus, which is usually drawn by the arithmetic mean of profit forecasts, has been widely harnessed among investors in stock market. Recently, it is emphasized to reflect the internal factors of individual forecasts to raise the accuracy of consensus. Based on national and international research, this study proposes a new methodology in consensus by applying statistically meaningful factors in computation.

  • PDF

Online news-based stock price forecasting considering homogeneity in the industrial sector (산업군 내 동질성을 고려한 온라인 뉴스 기반 주가예측)

  • Seong, Nohyoon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.1-19
    • /
    • 2018
  • Since stock movements forecasting is an important issue both academically and practically, studies related to stock price prediction have been actively conducted. The stock price forecasting research is classified into structured data and unstructured data, and it is divided into technical analysis, fundamental analysis and media effect analysis in detail. In the big data era, research on stock price prediction combining big data is actively underway. Based on a large number of data, stock prediction research mainly focuses on machine learning techniques. Especially, research methods that combine the effects of media are attracting attention recently, among which researches that analyze online news and utilize online news to forecast stock prices are becoming main. Previous studies predicting stock prices through online news are mostly sentiment analysis of news, making different corpus for each company, and making a dictionary that predicts stock prices by recording responses according to the past stock price. Therefore, existing studies have examined the impact of online news on individual companies. For example, stock movements of Samsung Electronics are predicted with only online news of Samsung Electronics. In addition, a method of considering influences among highly relevant companies has also been studied recently. For example, stock movements of Samsung Electronics are predicted with news of Samsung Electronics and a highly related company like LG Electronics.These previous studies examine the effects of news of industrial sector with homogeneity on the individual company. In the previous studies, homogeneous industries are classified according to the Global Industrial Classification Standard. In other words, the existing studies were analyzed under the assumption that industries divided into Global Industrial Classification Standard have homogeneity. However, existing studies have limitations in that they do not take into account influential companies with high relevance or reflect the existence of heterogeneity within the same Global Industrial Classification Standard sectors. As a result of our examining the various sectors, it can be seen that there are sectors that show the industrial sectors are not a homogeneous group. To overcome these limitations of existing studies that do not reflect heterogeneity, our study suggests a methodology that reflects the heterogeneous effects of the industrial sector that affect the stock price by applying k-means clustering. Multiple Kernel Learning is mainly used to integrate data with various characteristics. Multiple Kernel Learning has several kernels, each of which receives and predicts different data. To incorporate effects of target firm and its relevant firms simultaneously, we used Multiple Kernel Learning. Each kernel was assigned to predict stock prices with variables of financial news of the industrial group divided by the target firm, K-means cluster analysis. In order to prove that the suggested methodology is appropriate, experiments were conducted through three years of online news and stock prices. The results of this study are as follows. (1) We confirmed that the information of the industrial sectors related to target company also contains meaningful information to predict stock movements of target company and confirmed that machine learning algorithm has better predictive power when considering the news of the relevant companies and target company's news together. (2) It is important to predict stock movements with varying number of clusters according to the level of homogeneity in the industrial sector. In other words, when stock prices are homogeneous in industrial sectors, it is important to use relational effect at the level of industry group without analyzing clusters or to use it in small number of clusters. When the stock price is heterogeneous in industry group, it is important to cluster them into groups. This study has a contribution that we testified firms classified as Global Industrial Classification Standard have heterogeneity and suggested it is necessary to define the relevance through machine learning and statistical analysis methodology rather than simply defining it in the Global Industrial Classification Standard. It has also contribution that we proved the efficiency of the prediction model reflecting heterogeneity.

Comparison of Models for Stock Price Prediction Based on Keyword Search Volume According to the Social Acceptance of Artificial Intelligence (인공지능의 사회적 수용도에 따른 키워드 검색량 기반 주가예측모형 비교연구)

  • Cho, Yujung;Sohn, Kwonsang;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.103-128
    • /
    • 2021
  • Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.

Classification Algorithm-based Prediction Performance of Order Imbalance Information on Short-Term Stock Price (분류 알고리즘 기반 주문 불균형 정보의 단기 주가 예측 성과)

  • Kim, S.W.
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.157-177
    • /
    • 2022
  • Investors are trading stocks by keeping a close watch on the order information submitted by domestic and foreign investors in real time through Limit Order Book information, so-called price current provided by securities firms. Will order information released in the Limit Order Book be useful in stock price prediction? This study analyzes whether it is significant as a predictor of future stock price up or down when order imbalances appear as investors' buying and selling orders are concentrated to one side during intra-day trading time. Using classification algorithms, this study improved the prediction accuracy of the order imbalance information on the short-term price up and down trend, that is the closing price up and down of the day. Day trading strategies are proposed using the predicted price trends of the classification algorithms and the trading performances are analyzed through empirical analysis. The 5-minute KOSPI200 Index Futures data were analyzed for 4,564 days from January 19, 2004 to June 30, 2022. The results of the empirical analysis are as follows. First, order imbalance information has a significant impact on the current stock prices. Second, the order imbalance information observed in the early morning has a significant forecasting power on the price trends from the early morning to the market closing time. Third, the Support Vector Machines algorithm showed the highest prediction accuracy on the day's closing price trends using the order imbalance information at 54.1%. Fourth, the order imbalance information measured at an early time of day had higher prediction accuracy than the order imbalance information measured at a later time of day. Fifth, the trading performances of the day trading strategies using the prediction results of the classification algorithms on the price up and down trends were higher than that of the benchmark trading strategy. Sixth, except for the K-Nearest Neighbor algorithm, all investment performances using the classification algorithms showed average higher total profits than that of the benchmark strategy. Seventh, the trading performances using the predictive results of the Logical Regression, Random Forest, Support Vector Machines, and XGBoost algorithms showed higher results than the benchmark strategy in the Sharpe Ratio, which evaluates both profitability and risk. This study has an academic difference from existing studies in that it documented the economic value of the total buy & sell order volume information among the Limit Order Book information. The empirical results of this study are also valuable to the market participants from a trading perspective. In future studies, it is necessary to improve the performance of the trading strategy using more accurate price prediction results by expanding to deep learning models which are actively being studied for predicting stock prices recently.

Stock Price Prediction by Utilizing Category Neutral Terms: Text Mining Approach (카테고리 중립 단어 활용을 통한 주가 예측 방안: 텍스트 마이닝 활용)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.123-138
    • /
    • 2017
  • Since the stock market is driven by the expectation of traders, studies have been conducted to predict stock price movements through analysis of various sources of text data. In order to predict stock price movements, research has been conducted not only on the relationship between text data and fluctuations in stock prices, but also on the trading stocks based on news articles and social media responses. Studies that predict the movements of stock prices have also applied classification algorithms with constructing term-document matrix in the same way as other text mining approaches. Because the document contains a lot of words, it is better to select words that contribute more for building a term-document matrix. Based on the frequency of words, words that show too little frequency or importance are removed. It also selects words according to their contribution by measuring the degree to which a word contributes to correctly classifying a document. The basic idea of constructing a term-document matrix was to collect all the documents to be analyzed and to select and use the words that have an influence on the classification. In this study, we analyze the documents for each individual item and select the words that are irrelevant for all categories as neutral words. We extract the words around the selected neutral word and use it to generate the term-document matrix. The neutral word itself starts with the idea that the stock movement is less related to the existence of the neutral words, and that the surrounding words of the neutral word are more likely to affect the stock price movements. And apply it to the algorithm that classifies the stock price fluctuations with the generated term-document matrix. In this study, we firstly removed stop words and selected neutral words for each stock. And we used a method to exclude words that are included in news articles for other stocks among the selected words. Through the online news portal, we collected four months of news articles on the top 10 market cap stocks. We split the news articles into 3 month news data as training data and apply the remaining one month news articles to the model to predict the stock price movements of the next day. We used SVM, Boosting and Random Forest for building models and predicting the movements of stock prices. The stock market opened for four months (2016/02/01 ~ 2016/05/31) for a total of 80 days, using the initial 60 days as a training set and the remaining 20 days as a test set. The proposed word - based algorithm in this study showed better classification performance than the word selection method based on sparsity. This study predicted stock price volatility by collecting and analyzing news articles of the top 10 stocks in market cap. We used the term - document matrix based classification model to estimate the stock price fluctuations and compared the performance of the existing sparse - based word extraction method and the suggested method of removing words from the term - document matrix. The suggested method differs from the word extraction method in that it uses not only the news articles for the corresponding stock but also other news items to determine the words to extract. In other words, it removed not only the words that appeared in all the increase and decrease but also the words that appeared common in the news for other stocks. When the prediction accuracy was compared, the suggested method showed higher accuracy. The limitation of this study is that the stock price prediction was set up to classify the rise and fall, and the experiment was conducted only for the top ten stocks. The 10 stocks used in the experiment do not represent the entire stock market. In addition, it is difficult to show the investment performance because stock price fluctuation and profit rate may be different. Therefore, it is necessary to study the research using more stocks and the yield prediction through trading simulation.

An Empirical Analysis of KOSPI Volatility Using GARCH-ARJI Model (GARCH-ARJI 모형을 할용한 KOSPI 수익률의 변동성에 관한 실증분석)

  • Kim, Woo-Hwan
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.1
    • /
    • pp.71-81
    • /
    • 2011
  • In this paper, we systematically analyzed the variation of KOSPI returns using a GARCH-ARJI(auto regressive jump intensity) model. This model is possibly to capture time varying volatility as well as time varying conditional jump intensity. Thus, we can decompose return volatility into usual variation explained by the GARCH model and unusual variation that resulted from external news or shocks. We found that the jump intensity implied on KOSPI return series clearly shows time varying. We also found that conditional volatility due to jump is generally smaller than that resulted from usual variation. We also analyzed the effect of 9.11 and the 2008 financial crisis on the volatility of KOSPI returns and conclude that there is strong and persistent impact on the KOSPI from the 2008 financial crisis.

Liquidity-related Variables Impact on Housing Prices and Policy Implications (유동성 관련 변수가 주택가격에 미치는 영향 및 정책적 시사점에 관한 연구)

  • Chun, Haejung
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.585-600
    • /
    • 2012
  • The purpose of this study related to the liquidity impact of the housing market variables using vector auto-regressive model(VAR) and empirical analysis is to derive some policy implications. October 2003 until May 2012 using monthly data for liquidity variables mortgage rates, mortgage, financial liquidity, as the composite index and nation, Seoul, Gangnam, Gangbuk, the Apartment sales prices were analyzed. Granger Causality Test Results, mortgage rates and mortgage at a bargain price two regions had a strong causal relationship. Since the impulse response analysis, Geothermal difference there, but housing price housing price itself, the most significant ongoing positive (+) reactions were liquidity-related variables are mortgage loans is large and persistent positive (+), financial liquidity weakly positive (+), mortgage interest rates are negative (-), KOSPI, the negative (-) reacted. Liquidity and housing prices that the rise can be and Gangnam in Gangbuk is greater than the factor that housing investment was confirmed empirically. Government to consider the current economic situation, while maintaining low interest rates and liquidity of the market rather than the real estate industry must ensure that activities can be embedded and local enforcement policies should be differentiated according to the policy will be able to reap significant effect.

  • PDF

Interrelationship among the Foreign Exchange, Stock and Bond Market: Comparative Analysis of Korea and Japan (외환.주식.채권시장의 상호 관련성 : 한국.일본의 비교)

  • Chi, Ho-Joon;Kim, Sang-Whan
    • The Korean Journal of Financial Management
    • /
    • v.18 no.2
    • /
    • pp.169-191
    • /
    • 2001
  • 본 연구는 우리나라와 일본의 주가, 금리와 환율 등 주요 금융자산가격변수들이 상호간에 주고받는 영향을 3변량 MA-GARCH모형을 사용하여 분석하여 보았다. 우선 각 시장의 조건부 수익률을 기준으로 볼 때 우리나라에서는 외환위기 이후 주식시장과 채권시장의 상관관계는 낮아진 반면 외환시장과 주식시장, 외환시장과 채권시장의 상관관계는 10%p 이상씩 높아진 것으로 나타났다. 따라서 외환위기 이후 주식, 채권시장의 외환시장과의 연관성은 크게 높아져 환율 움직임의 영향력이 전반적으로 커졌다고 이해할 수 있다. 이에 비해 일본의 경우 각각의 금융시장간 상관계수는 10% 이하의 매우 낮은 수준에 불과하여 상호관련성이 낮은 수준을 보여 주었다. GARCH 추정이 도출한 각 시장의 조건부표준편차들간의 상관계수를 보면, 우리나라와 일본 모두 외환시장 변동성$\leftrightarrow$채권시장 변동성, 주식시장 변동성$\leftrightarrow$채권시장 변동성 사이의 상관관계는 28-29% 정도이며, 외환시장 변동성$\leftrightarrow$주식시장 변동성 사이의 관계는 21% 정도로 상대적으로 낮은 수치를 보여 주었다. 반면에 금융시장 변동성의 각 국간 상관관계는 90% 내외의 높은 상관관계를 가져, 국가내의 시장간 관계보다 더 높은 수치를 보여 주었다. 따라서 우리나라와 일본의 금융시장 변동성은 국내금융시장간의 요인보다는 모두 미국 주식시장에서의 충격이나 국제유가 급등락 등 외부적 요인에 대해 크게 영향을 받는 것으로 판단해 볼 수 있을 것이다.

  • PDF

The Study on Possibility of Strategic Trade using Disclosure Interval (공시시차를 이용한 전략적 매매의 개연성에 관한 연구)

  • Ko, Hyuk-Jin;Park, Seong-Ho;Lim, Jun-Kyu;Park, Young-S.
    • The Korean Journal of Financial Management
    • /
    • v.26 no.4
    • /
    • pp.165-189
    • /
    • 2009
  • According to disclosure regulation, insider can hide their trading until disclosure day, because there be interval between trading time and disclosure time. To accommodate strategic trade, they have an incentive to be brought disclosure interval as long as possible. This research investigate whether strategical behaviour of informed traders using disclosure intervals exists in domestic stock market.ls xt, we aney he whether they can get abnormal return through stealth strategy after announcement date. We also evaluate the effect of mimicking trading on price impact with the assumption of existence of mimicking trading. Our major research results are as follows: In case of main shareholder without having no prompt disclosure duty, the frequency of trading started at the beginning of month is shown significantly higher than others. This result shows a direct evidence that informed traders buy or sell their equity strategically using disclosure intervals. Also, we find the result that the coefficient of strategic variables has highest value in middle size information. However, the empirical evidence that informed trader get abnormal return through strategic trading was not shown in this study. Meanwhile, stock price over-reacts for selling transaction on trading point and is recovered after disclosure date., so we assume possibility of mimicking trading exists in domestic stock market.

  • PDF

Determinants of Foreign Investment in the Korean Bonds by Maturity and Market Impacts (외국인의 만기별 국내 채권투자 결정요인과 채권시장 영향)

  • Kim, Dong Soon;Park, Jong Youn
    • International Area Studies Review
    • /
    • v.15 no.1
    • /
    • pp.291-314
    • /
    • 2011
  • We examine the motives of foreigner's investments in the Korean bonds by maturity and try to prove that market impacts are different by their investment maturity. Foreign investors initially focused on short-term bonds, but have expanded to mid- to long-term bonds since 2010. The previous studies found that covered interest arbitrage was the main reason for foreign investment. However, there should be some other reasons as their investment in mid- to long-term bonds might have nothing to do with arbitrage. In the empirical analysis, we found that foreign investment in bonds with less than 2 year maturity is driven by arbitrage as previous studies. However, investment in bonds with 2-5 year maturity is sensitive to the FX volatility and the stock market performance compared with the U.S. and investment in bonds with more than 5 year maturity is driven by the CDS premium differential between Korea and PIIGS countries. The more foreigners have invested mid- to long-term bonds, the stronger downward pressure has been on the bond yields. In addition, foreign investors indirectly affected the spreads. Meanwhile, the government should prepare some policy measures since concerns over side effects such as the Korean won appreciation and an abrupt capital outflow are arising.