• Title/Summary/Keyword: 좌표 보정

Search Result 386, Processing Time 0.027 seconds

Digital Image Processing Technique for Measurements from Non-metric Photographs (비측정용 사진의 측정을 위한 수치화상처리기법의 적용)

  • 안기원;박병욱
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.199-208
    • /
    • 1995
  • Significant developments in the use of digital imagery for close-range photogrammetric metrology have occured in the last few years because of technological advances in digital image processing. Present day needs for applications of digital image processing technique to measurements of photographs obtained with non-metric camera at reduced cost, automation and convenience. In order for this application to be useful, a detailed procedure must be developed. Investigation of this study is given to the detailed procedure for the digital measurements of the object space data from the scanned non-metric photographs.

  • PDF

Facial Feature Detection Method within the Skewed Facial Images (기울어진 얼굴 영상에서 얼굴 구성 요소 추출 방법)

  • 김익환;송호근
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.436-438
    • /
    • 2001
  • 본 논문에서는 기울어진 얼굴 영상에서 얼굴 구성 요소를 추출하는 방법을 제안한다. 제안하는 방법은 먼저 피부 색상 정보를 이용하여 얼굴 후보 영역을 추출한다. 이때 YIQ 색상 좌표계를 이용하고 조명의 영향을 반영하기 위하여 피부색상 영역을 다단계로 분할하여 색상 영역을 각각 결정한 뒤 적중률을 계산하여 얼굴 후보 영역을 결정하는 방법을 제안하였다. 2단계에서는 얼굴의 구성 요소중 가장 두드러진 특징인 눈동자 영역을 기준으로 한국인의 표준 얼굴 통계치를 적응하여 탐색하는 방법을 사용하였다. 이때 탐색된 눈동자 좌표로부터 얼굴의 기울기를 추정한다. 다음 단계에서는 얼굴 후보 영역에 대하여 기울어짐 보정을 수행한 뒤, 수평 수직 투영값을 이용하여 얼굴의 구성요소를 탐색한 뒤 얼굴 포함 최소 사각형을 정의하였다. 마지막으로 얼굴 영상 데이터 베이스로부터 얼굴 포함 최소 사각형에 대한 명암값 표준템플릿을 정의하고, 입력 영상에서 탐색된 최소 포함 사각형에 대하여 얼굴 영역 검증하는 방법을 제안하였다.

  • PDF

Runup Computation of 1992 Nicaraguan Tsunami (1992年 니카라구아 쓰나미의 범람 산정)

  • 최병호;정홍화
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.24-32
    • /
    • 1995
  • Tsunami generated by the 1992 Nicaragua's west coast earthquake caused 95 persons death, 155 persons injury and 3000 persons homelessness. The previous study done by Imamura et al. (1993) were on the 1992 Nicaragua tsumami generation and propagation which were simulated by using spherical far-field model and Cartesian near-field model, and the computed results with assumption of vertical wall at coast were adjusted by runup ratio to compare with observations. This study using moving boundary model hindcasts El Transito's runup height which was observed as about 6.4-9.9m.

  • PDF

Design of a verification scheme for the road network map based on GPS deviation (GPS 편차를 이용한 도로네트워크 지도의 정확성 검증 기법의 설계)

  • Lee, Junghoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.1043-1044
    • /
    • 2009
  • 본 논문에서는 GPS 편차 정보를 이용하여 도로 네트워크 지도 제작시 불가피하게 발생하는 오차를 탐지하는 기법을 제안한다. 제안된 기법은 수십에서 수백 킬로미터 범위에 위치한 노드들이 공통적인 GPS오차를 겪는다는 점에 착안하고 있으며 각 도로 네트워크의 차량들이 동시간에 보고하는 위치 좌표를 이용하여 맵 매칭을 수행한 후 해당 시간스탬프의 오차를 계산한다. 이 오차를 이용하여 각 위치 좌표들를 보정한 후 다시 맵 매칭을 수행하여 맵 매칭의 오류가 한계치 이하라면 보고된 위치에 해당하는 도로들은 정확하게 플롯되어 있음을 알 수 있다. 이와 같은 통계들이 오랜 시간동안 쌓인다면 별도의 장비나 통신채널을 사용하지 않고 소프트웨어만으로 도로망 지도의 정확성을 검증할 수 있다.

Development of 2.5D Photon Dose Calculation Algorithm (2.5D 광자선 선량계산 알고리즘 개발)

  • 조병철;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.103-114
    • /
    • 1999
  • In this study, as a preliminary study for developing a full 3D photon dose calculation algorithm, We developed 2.5D photon dose calculation algorithm by extending 2D calculation algorithm to allow non-coplanar configurations of photon beams. For this purpose, we defined the 3d patient coordinate system and the 3d beam coordinate system, which are appropriate to 3d treatment planning and dose calculation. and then, calculate a transformation matrix between them. For dose calculation, we extended 2d "Clarkson-Cunningham" model to 3d one, which can calculate wedge fields as well as regular and irregular fields on arbitrary plane. The simple Batho's power-law method was implemented as an inhomogeneity correction. We evaluated the accuracy of our dose model following procedures of AAPM TG#23; radiation treatment planning dosimetry verifications for 4MV of Varian Clinac-4. As results, PDDs (percent depth dose) of cubic fields, the accuracy of calculation are within 1% except buildup region, and $\pm$3% for irregular fields and wedge fields. And for 45$^{\circ}$ oblique incident beam, the deviations between measurements and calculations are within $\pm$4%. In the case of inhomogeneity correction, the calculation underestimate 7% at the lung/water boundary and overestimate 3% at the bone/water boundary. At the conclusions, we found out our model can predict dose with 5% accuracy at the general condition. we expect our model can be used as a tool for educational and research purpose.. purpose..

  • PDF

Calibration of Hydrographic Survey Multibeam System Using Terrestrial Laser Scanning and TS Surveying (지상 레이저 스캐닝과 TS 측량을 이용한 멀티빔 시스템의 검·보정)

  • Kim, Jin Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.3
    • /
    • pp.199-207
    • /
    • 2013
  • In hydrographic survey, data surveyed with multibeam system includes various errors due to multiple factors. These are corrected by a calibration called patch test, and if existing method is used, the test needs to be conducted for about 8 times for precise system calibration. For more prompt and precise multibeam system calibration, the exact offset of a ship was determined using terrestrial laser scanning and TS surveying, which was used as the initial input for the patch test. In the result, the error of closure was 0.001 m or less for TS surveying and backsight error was 0.005 m or less for scanning. All the surveying data based on the same local coordinate was converted into vessel reference coordinate during which R-square for all rotation angles was 0.99 or higher and standard deviation was 0.008 m or less. Finally, in a patch test using calculated offset of sensors and motion sensor offset, the offset of MBES transducer satisfied manual on hydrography only with 1-time calibration. With these results, it is thought that terrestrial laser scanning and TS surveying can fully be utilized for multibeam system calibration.

Optimal Localization through DSA Distortion Correction for SRS

  • Shin, Dong-Hoon;Suh, Tae-Suk;Huh, Soon-Nyung;Son, Byung-Chul;Lee, Hyung-Koo;Choe, Bo-Young;Shinn, Kyung-Sub
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2000
  • In Stereotactic Radiosurgery (SRS), there are three imaging methods of target localization, such as digital subtraction Angiography (DSA), computed tomography (CT), magnetic resonance imaging (MRI). Especially, DSA and MR images have a distortion effect generated by each modality. In this research, image properties of DSA were studied. A first essential condition in SRS is an accurate information of target locations, since high dose used to treat a patient may give a complication on critical organ and normal tissue. Hut previous localization program did not consider distortion effect which was caused by image intensifier (II) of DSA. A neurosurgeon could not have an accurate information of target locations to operate a patient. In this research, through distortion correction, we tried to calculate accurate target locations. We made a grid phantom to correct distortion, and a target phantom to evaluate localization algorithm. The grid phantom was set on the front of II, and DSA images were obtained. Distortion correction methods consist of two parts: 1. Bilinear transform for geometrical correction and bilinear interpolation for gray level correction. 2. Automatic detection method for calculating locations of grid crosses, fiducial markers, and target balls. Distortion was corrected by applying bilinear transform and bilinear interpolation to anterior-posterior and left-right image, and locations of target and fiducial markers were calculated by the program developed in this study. Localization errors were estimated by comparing target locations calculated in DSA images with absolute locations of target phantom. In the result, the error in average with and without distortion correction is $\pm$0.34 mm and $\pm$0.41 mm respectively. In conclusion, it could be verified that our localization algorithm has an improved accuracy and acceptability to patient treatment.

  • PDF

Influence of Radome Types on GNSS Antenna Phase Center Variation (GNSS 안테나 위상중심변동에 레이돔이 미치는 영향)

  • Yun, Seonghyeon;Lee, Hungkyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.11-21
    • /
    • 2020
  • This paper deals with the impact of a GNSS (Global Navigation Satellite System) antenna radome on the PCV (Phase Center Variations) and the estimated kinematic coordinates. For the Trimble and Leica antennas, specially set up CORS (Continuously Operation Reference Stations) in Korea, the PCC (Phase Center Corrections) were calculated and compared for NONE, SCIS, SCIT, and TZGD radome from the PCV model published by the IGS (International GNSS Services). The results revealed that the PCC differences compared to the NONE were limited to about 1mm in the horizontal component while those of the vertical direction ranged from a few millimeters to a maximum of 7mm. Among the radomes of which PCV were compared, the SCIT had the most significant influence on the vertical component, and its GPS (Global Positioning System) L2 and L2 PCC (Phase Center Corrections) had opposite direction. As a result of comparing the kinematic coordinates estimated by the baseline processing of 7 CORSs with an application of the PCV models of the various radomes, the SCIS which was actually installed at CORS in Korea showed 3.4mm bias, the most substantial impact on the ellipsoidal height estimation whereas the SCIT model resulted in relatively small biases.

The Korean Geodetic Network Adjustments for EDM Area (국가기준점 망조정에 관한 연구 - EDM 관측지역)

  • Yang, Hyo-Jin;Choi, Yun-Soo;Kwon, Jay-Hyoun;Kim, Dong-Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.5
    • /
    • pp.393-398
    • /
    • 2007
  • According to the Korean datum change to a world geodetic system, the EDM area should be readjusted to provide consistent product over the country. The data set for EDM area is extracted from the previous KTN1987 DB and checked for the moved markers in XY network adjustment which provides quality verification. Then, EDM data set for the seven areas are rebuilt for the adjustment. Since the data is still based on the old datum, the coordinates of the data are transformed by applying the coordinate transformation parameters. Here, the transformation parameters, which were determined for the conversion of 1:50,000 topographic maps by NGII, were used. For each EDM point, the geoidal height from EGM96 model is applied to obtain the ellipsoidal height based on the GRS80. The measured distance projected onto GRS80 is adjusted using BL network adjustment by fixing 2nd order or 3rd order GPS control points. The results from the readjustment show the minimum standard error of 1.37" and the maximum standard error of 2.13". Considering the measurement accuracy of EDM (1.6" corresponding to about 2cm) and GPS position for fixed points (2cm), this result is considered to be reasonable and it is good for the practical use.

A Study on the Error Compensation of Three-DOF Translational Parallel Manipulator (3자유도 병렬기구의 위치오차 보정기술에 관한 연구)

  • 신욱진;조남규
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.44-52
    • /
    • 2004
  • This paper proposed a error compensation methodology for three-DOF translational parallel manipulator. The proposed method uses CMM (coordinate measuring machine) as metrology equipment to measure the position of end-effector. To identify the transform relationships between the coordinate system of the parallel manipulator and the CMM coordinate system, a new coordinate referencing (or coordinate system identification) technique is presented. By using this technique, accurate coordinate transformation relationships are efficiently established. According to these coordinate transformation relationships, an equation to calculate the compensating error components at any arbitrary position of the end-effector is derived. In this paper, Monte Carlo simulation method is applied to simulate the compensation process. Through the simulation results, the proposed error compensation method proves its effectiveness and feasibility.