• Title/Summary/Keyword: 좌표 보정

Search Result 386, Processing Time 0.026 seconds

A Design and Implementation of Compensation Algorithm for Radiodetermination Error using Determination Coordinator Value of Equivalent Distance Rate (균등거리비율의 측위좌표 값을 이용한 무선측위 오차 보정 알고리즘의 설계 및 구현)

  • Kwon, Seong-Ki;Lee, Dong-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9A
    • /
    • pp.852-858
    • /
    • 2010
  • In this paper, the compensation algorithm for radiodetermination error using a concept of determination coordinator value of equivalent distance rate (CADE) is proposed, and the performance of the proposed algorithm is analyzed. As a result of the experiments, CADE improves the performance of the algorithm accuracy about 37.5% and 69.8% each in the inside and outside of 4 beacon nodes. Furthermore, the CADE is 76.3% excellent enough to compensate 2m or more of the radiodetermination error. It also confirms that CADE can be adapted to the wide range by installing only 4 beacon nodes according to the excellence of compensation performance besides the ranges of 4 beacon nodes. From the results, it is strongly considered that the proposed algorithm CADE can be used to the performance enhancement of radiodetermination systems using SDS-TWR.

Conversion of 3-Component Magnetic Data into Geodetic Coordinate System by Using Clinometer and GNSS Compass (경사계와 GNSS 나침반을 이용한 3성분 자력 탐사자료의 측지 좌표계로의 변환 방법)

  • Jeon, Tae-Hwan;Rim, Hyoungrea;Park, Young-Sue;Lim, Muteak;Shin, Young-Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.2
    • /
    • pp.91-96
    • /
    • 2013
  • This study proposes a method to correct inclination of instrument during exploration with a biaxial clinometer and GNSS compass. In 3-component magnetometry, measured vectors are ordinarily described in randomly inclined observation coordinate system due to movement, vibration, and shaking of instrument. Therefore, rotation angles of observation plane are needed to transform it into geodetic coordinate system. In this study, we measured inclination angles of observation plane by using 2-axis clinometer and GNSS compass, and derived proper parameters for rotational transform from them. We applied the conversion method to on-board 3-component magnetometry, and then transformed raw data into proper values on geodetic coordinate system.

Computation of 3D Coordinates from Stereo Images with RPCs (RPC를 이용한 Stereo 영상으로부터의 3차원 좌표 추출)

  • Kim Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.2
    • /
    • pp.135-143
    • /
    • 2005
  • RPC(Rational Polynomial Camera) models have become the replacement model of choice for a number of high resolution satellite imagery providers. RPCs(Rational Polynomial Coefficients) provide a compact accurate representation of the ground to image geometry, allowing users to perform full photogrammetric processing of satellite imagery including block adjustment, 3D feature extraction and orthorectification. This paper presents an algorithm for 3D feature extraction using downhill simpler method which requires only function evaluations, not derivatives. The algorithm was implemented as an executable software program and tested using stereo IKONOS images of Seoul city. The results showed that the proposed algorithm was fast and accurate enough to be used as a practical method for the 3D feature extraction from stereo images with RPCs.

A Study on the Orthometric Height Correction in Mt. Hangye Area (강원도 한계령 지역의 정규고 보정에 대한 연구)

  • Choi, Kwang-Sun;Lee, Jeong-Mo
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.522-528
    • /
    • 1997
  • Gravity surveys with accompanying spirit levelings were carried out in Mt. Hangye area. From these survey results, orthometric height correctioins were calculated. The correction reaches 5 cm when the height difference is 900 m in this area. The corrections were also calculated using an available Bouguer anomaly map, and they are little different from the previous results. In conclusion, orthometric height corrections are necessary in precise spirit leveling, specially in higher lands, and they can be easily calculated from an available Bouguer anomaly map without laborious gravity surveys.

  • PDF

A study on the Accuracy Analysis of the World Geodetic System Transformation for GIS Base Map and Database (GIS 기본도 및 DB의 세계측지계 좌표변환 정확도 분석에 관한 연구)

  • Cho, Jae-Kwan;Choi, Yun-Soo;Kwon, Jay-Hyoun;Lee, Bo-Mi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.3
    • /
    • pp.79-85
    • /
    • 2008
  • This study aims to derive a practical coordinate transformation method for the existing geographic information database. After analyzing the status and problems of existing 1/1,000 digital base map and GIS application database, the transformation parameters are estimated and the accuracy of the transformation is determined based on the transformed coordinates. We analyzed the accuracy of a transformation using the published national transformation coefficients as well as the estimated local transformation coefficients using national and urban control points in a study area. In addition, the 1/1,000 digital base map from aerial triangulation is compared with respect to the coordinates of urban control points. Based on the comparison, the biases on the national control points which were used at the time of digital map generation was analyzed. Then, the accuracy of transformed coordinates based on the world geodetic system using local transformation coefficients estimated from urban control points are determined. We also analyzed the transformation accuracy of underground infrastructure database using the same transformation method as the case of 1/1,000 digital base map. Through this study, it was found that the estimation of transformation coefficients by Molodensky-Badekas using urban control points was suitable for a local government. Furthermore, it was obvious that the accuracy of a 2-dimensional affine transformation was comparable to that of 7 parameter transformation for a local area. Applying the coordinate transformation and bias correction, we could transform GIS application database which was built by an offset surveying based on digital base map within the transformation accuracy of 10 cm. Therefore, it was judged that there will not be a big problem on the transformation of the GIS DB to the world geodetic system.

  • PDF

Scale-Up Factor for Seismic Analysis of Building Structure for Various Coordinate Systems (건축구조물의 지진해석에서 좌표축의 설정에 따른 보정계수 산정법)

  • Yu, Il-Hyang;Lee, Dong-Guen;Ko, Hyun;Kim, Tae-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.33-47
    • /
    • 2007
  • In a practical engineering, the equivalent static analysis (E.S.A) and the response spectrum analysis (R.S.A) are generally used for the seismic analysis. The base shears obtained from the E.S.A are invariable no matter how the principal axes of building structures are specified on an analysis program while those from the R.S.A are variable. Accordingly, the designed member size may be changed by how an engineer specify the principal axes of a structure when the R.S.A is used. Moreover, the base shears in the normal direction to the excitation axis are sometimes produced even when an engineer performs a response spectrum analysis in only one direction. This tendency makes the base shear, which is used to calculate the scale-up factor, relatively small. Therefore the scale-up factor becomes larger and it results in uneconomical member sizes. To overcome these disadvantages of the R.S.A, an alternative has been proposed in this study. Three types of example structures were adapted in this study, i.e. bi-direction symmetric structure, one-direction antisymmetric structure and bi-direction antisymmetric structure. The seismic analyses were performed by rotating the principal axes of the example structures with respect to the global coordinate system. The design member forces calculated with the scale-up factor used in the practice were compared with those obtained by using the scale-up factor proposed in this study. It can be seen from this study that the proposed method for the scale-up factor can provide reliable and economical results regardless of the orientation of the principal axes of the structures.

Iterative Precision Geometric Correction for High-Resolution Satellite Images (고해상도 위성영상의 반복 정밀 기하보정)

  • Son, Jong-Hwan;Yoon, Wansang;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.431-447
    • /
    • 2021
  • Recently, the use of high-resolution satellites is increasing in many areas. In order to supply useful satellite images stably, it is necessary to establish automatic precision geometric correction technic. Geometric correction is the process that corrected geometric errors of satellite imagery based on the GCP (Ground Control Point), which is correspondence point between accurate ground coordinates and image coordinates. Therefore, in the automatic geometric correction process, it is the key to acquire high-quality GCPs automatically. In this paper, we proposed iterative precision geometry correction method. we constructed an image pyramid and repeatedly performed GCP chip matching, outlier detection, and precision sensor modeling in each layer of the image pyramid. Through this method, we were able to acquire high-quality GCPs automatically. we then improved the performance of geometric correction of high-resolution satellite images. To analyze the performance of the proposed method, we used KOMPSAT-3 and 3A Level 1R 8 scenes. As a result of the experiment, the proposed method showed the geometric correction accuracy of 1.5 pixels on average and a maximum of 2 pixels.

칼라 모니터의 감성색채 재현에 관한 연구

  • 박승옥;김홍석;최재호
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.04a
    • /
    • pp.131-134
    • /
    • 1998
  • 본 연구에서는 칼라모니터의 바탕화면의 색과 휘도를 보정하고, 물체색고 모니터색의 기준 백색을 일치시킴으로써 매체가 다른 두 색이 같아 보이도록 하는 색재현 방법을 제시하였다. Mabcbeth colorChecker 24색에 대해 재현색의 색도좌표 측정값과 계산값이 잘 일치하는 결과를 얻음으로써 본 방법은 간편하면서도 전 영역의 색에 적용가능함을 보였다.

  • PDF

GEOCODING OF SAR IMAGE USING THE ORBIT AND ATTITUDE DETERMINATION OF RADARSAT (RADARSAT 위성의 궤도결정과 자세결정을 이용한 SAR 영상의 자리매김)

  • 소진욱;최규홍;원중선
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.183-196
    • /
    • 1998
  • The Synthetic Aperture Radar(SAR) image and the Digital Elevation Model(DEM) of an target area are put into use to generate three dimensional image map. An method of image map generation is explained. The orbit and attitude determination of satellite makes it possible to model signal acquisition configuration precisely, which is a key to mapping image coordinates to geographic coordinates of concerned area. An application is made to RADARSAT in the purpose of testing its validity. To determine the orbit, zero Doppler range is used. And to determine the attitude, Doppler centroid frequency, which is the frequency observed when target is put in the center of antenna's view, is used. Conventional geocoding has been performed on the basis of direct method(mapping image coordinates to geographic coordinates), but in this reserch the inverse method(mapping from geographic coordinates to image coordinates) is taken. This paper shows that precise signal acquisition modeling based on the orbit and attitude determination of satellite as a platform leads to a satellite-centered accurate geocoding process. It also shows how to model relative motion between space-borne radar and target. And the relative motion is described in ECIC(earth-centered-initial coordinates) using Doppler equation and signal acquisition geometry.

  • PDF

Generation of Ortho-Image of Close-Range Photographs by Digital Image Processing Technique (수치화상처리기법을 이용한 지상사진의 정사투영화상의 작성)

  • Ahn, Ki Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.191-199
    • /
    • 1993
  • Investigation is given to the detailed procedure of a computer assisted automatic technique for ortho-image generation from digital stereo image data of close-range photographs scanned by the CCD camera scanner. After rectification of geometric scanning errors, the bundle adjustment technique was used to determine the exterior orientation parameters of terrestrial camera. An automatic correlation matching technique was applied to search for the conjugate pixels in digital stereo pairs. And the 3-dimensional coordinates of the corresponding pixels were calculated by the space intersection method. For the generation of ortho-image from the calculated coordinates and right image data values, inverse-weighted-distance average method was used. And the accuracy of the resulting ortho-image was checked by comparing its image coordinates with there corresponding ground coordinates for the check points.

  • PDF