• Title/Summary/Keyword: 좌표평면

Search Result 275, Processing Time 0.024 seconds

A Study on the Prediction of Flow near the Confluence of Banbyeoncheon by Using the KU-RLMS Model (KU-RLMS 모형을 이용한 반변천 합류부 흐름 예측에 관한 연구)

  • Lee, Keum-Chan;Lee, Nam-Joo;Lyu, Si-Wan;Yeo, Hong-Koo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1209-1213
    • /
    • 2007
  • 하천 수치모델링을 통한 흐름, 오염물질 거동, 지형변화 해석 등은 효율적인 하천 수질 관리를 위해서 상당히 중요한 부분은 차지한다. 수질이나 지형변화를 보다 정확하게 예측하기 위해서는 하천 흐름 예측의 정확도 향상이 중요한 역할을 하게 된다. 본 연구는 평면 이차원 하상변동 및 수질예측 수치모형인 KU-RLMS 모형을 이용하여 낙동강 상류의 반변천 합류부의 흐름 특성을 규명하고, 수질 모형을 수행하기 위한 흐름 계산 결과를 제공하기 위해 수행하였다. KU-RLMS 모형은 하천 및 저수지의 국부적인 수리, 수질, 유사이동 해석을 위해 개발된 평면 이차원 비정상 수치모형이다. 직사각형 격자를 사용하는 유한차분법의 단점을 보완하기 위해, 흐름 계산을 위한 지배방정식은 3차원 Reynolds 방정식으로부터 수심적분된 2차원 연속방정식과 운동량방정식을 불규칙한 경계를 현실적으로 모사할 수 있는 직교곡선 좌표계로 변환한 방정식을 사용한다. 수치모형 적용을 위한 현황분석으로 안동 및 임하 조정지댐의 방류량, 안동 수위관측소의 자료를 분석하였다. 흐름 모형을 보정하기 위해 안동대교 지점에서 횡유속 분포를 측정하였으며, 이 결과를 사용하여 흐름 모형의 매개변수인 Manning 계수와 공간가중계수를 추정 및 검증하였다. 안동다목적댐과 임하다목적댐의 방류량을 고려하여 수치모의조건을 결정하였으며, 각 조건에 대한 흐름 변화 특성을 분석하였다.

  • PDF

A Analysis of Highway′s Horizontal Alignment Using Kinematic GPS Surveying (동적 GPS 관측에 의한 도로의 평면선형 분석)

  • 이종출
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.1
    • /
    • pp.39-45
    • /
    • 2001
  • The design of highway in the future should be convenient using of a high-technology information, and it needs the design of alignment that is able to find the maximum vehicles inducement function fitting into Car Navigation System. Well then, the alignment of the existent highway needs to be analyzed with accuracy for improving design of existent highway, and it needs the design drawing of existent highway, and coordinates of the main point. This study gets data of the alignment of highway economically by Kinematic GPS surveying to analyze the alignment of existent highway, and horizontal alignment of highway is analyzed by this data. The result of study is included within range practical error, and alignment analysis can be known that there is practical.

  • PDF

A Study on the Stress Concentration and Diminishing in Structural Member with Arbitrary Section Using Finite Element Method (유한요소법을 이용한 집중하중을 받는 임의단면형상부재에서 응력집중현상과 소멸현상에 관한 연구)

  • 최종근;이종재;김동현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1069-1078
    • /
    • 1990
  • It is shown that the performance of finite element based on energy orthogonal functions may be superior to conventional formulation for plane stress problem. Using this finite element, it is then attempted to show the distribution of stress concentration effect for subsurface under loading point. It turned out that the stress concentration effect for subsurface is not dependent on the width of the member but the loading area. And then it is shown that the solution attained by taking the stress function as a Fourier series is not satisfactory in y<0.1B.

Unified Section and Shape Discrete Optimum Design of Planar and Spacial Steel Structures Considering Nonlinear Behavior Using Improved Fuzzy-Genetic Algorithms (개선된 퍼지-유전자알고리즘에 의한 비선형거동을 고려한 평면 및 입체 강구조물의 통합 단면, 형상 이산화 최적설계)

  • Park, Choon Wook;Kang, Moon Myung;Yun, Young Mook
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.385-394
    • /
    • 2005
  • In this paper, a discrete optimum design program was developed using the refined fuzzy-genetic algorithms based on the genetic algorithms and the fuzzy theory. The optimum design in this study can perform section and shape optimization simultaneously for planar and spatial steel structures. In this paper, the objective function is the weight of steel structures and the constraints are the design limits defined by the design and buckling strengths, displacements, and thicknesses of the member sections. The design variables are the dimensions and coordinates of the steel sections. Design examples are given to show the applicability of the discrete optimum design using the improved fuzzy-genetic algorithms in this study.

VRS-based Precision Positioning using Civilian GPS Code Measurements (가상기준점 기반 코드신호를 이용한 정밀 측위)

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.201-208
    • /
    • 2011
  • With the increase in the number of smartphone users, precise 3D positional information is required by various applications. The positioning accuracy using civilian single-frequency pseudoranges is at the level of 10 m or so, but most applications these days are asking for a sub-meter level Therefore, instead of an absolute positioning technique, the VRS-based differential approach is applied along with the correction of the double-differenced (DD) residual errors using FKP (Flachen-Korrektur-Parameter). The VRS (Virual Reference Station) is located close to the rover, and the measurements are generated by correcting the geometrical distance to those of the master reference station. Since the unmodeled errors are generally proportional to the length of the baselines, the correction parameters are estimated by fitting a plane to the DD pseudorange errors of the CORS network. The DD positioning accuracy using 24 hours of C/A code measurements provides the RMS errors of 37 cm, 28 cm for latitudinal and longitudinal direction, respectively, and 76 cm for height. The accuracy of the horizontal components is within ${\pm}0.5m$ for about 90% of total epochs, and in particular the biases are significantly decreased to the level of 2-3 cm due to the network-based error modeling. Consequently, it is possible to consistently achieve a sub-meter level accuracy from the single-frequency pseudoranges using the VRS and double-differenced error modeling.

A Study on Depth Data Extraction for Object Based on Camera Calibration of Known Patterns (기지 패턴의 카메라 Calibration에 기반한 물체의 깊이 데이터 추출에 관한 연구)

  • 조현우;서경호;김태효
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.173-176
    • /
    • 2001
  • In this thesis, a new measurement system is implemented for depth data extraction based on the camera calibration of the known pattern. The relation between 3D world coordinate and 2D image coordinate is analyzed. A new camera calibration algorithm is established from the analysis and then, the internal variables and external variables of the CCD camera are obtained. Suppose that the measurement plane is horizontal plane, from the 2D plane equation and coordinate transformation equation the approximation values corresponding minimum values using Newton-Rabbson method is obtained and they are stored into the look-up table for real time processing . A slit laser light is projected onto the object, and a 2D image obtained on the x-z plane in the measurement system. A 3D shape image can be obtained as the 2D (x-z)images are continuously acquired, during the object is moving to the y direction. The 3D shape images are displayed on computer monitor by use of OpenGL software. In a measuremental result, we found that the resolution of pixels have $\pm$ 1% of error in depth data. It seems that the error components are due to the vibration of mechanic and optical system. We expect that the measurement system need some of mechanic stability and precision optical system in order to improve the system.

  • PDF

Modeling and analysis of dynamic heat transfer in the cable penetration fire stop system by using a new hybrid algorithm (새로운 혼합알고리즘을 이용한 CPFS 내에서의 일어나는 동적 열전달의 수식화 및 해석)

  • Yoon En Sup;Yun Jongpil;Kwon Seong-Pil
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.44-52
    • /
    • 2003
  • In this work dynamic heat transfer in a CPFS (cable penetration fire stop) system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealant. Dynamic heat transfer in the fire stop system is formulated in a parabolic PDE (partial differential equation) subjected to a set of initial and boundary conditions. First, the PDE model is divided into two parts; one corresponding to heat transfer in the axial direction and the other corresponding to heat transfer on the vertical planes. The first PDE is converted to a series of ODEs (ordinary differential equations) at finite discrete axial points for applying the numerical method of SOR (successive over-relaxation) to the problem. The ODEs are solved by using an ODE solver In such manner, the axial heat flux can be calculated at least at the finite discrete points. After that, all the planes are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The initial condition of each finite element can be obtained from the above solution. The heat fluxes on the vertical planes are calculated by the Galerkin FEM (finite element method). The CPFS system was modeled, simulated, and analyzed here. The simulation results were illustrated in three-dimensional graphics. Through simulation, it was shown clearly that the temperature distribution was influenced very much by the number, position, and temperature of the cable stream, and that dynamic heat transfer through the cable stream was one of the most dominant factors, and that the feature of heat conduction could be understood as an unsteady-state process.

  • PDF

Design of a Front Image Measurement System for the Traveling Vehicle Using V.F. Model (V.F. 모델을 이용한 주행차량의 전방 영상계측시스템 설계)

  • Jung Yong-Bae;Kim Tae-Hyo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.3
    • /
    • pp.108-115
    • /
    • 2006
  • In this paper, a recognition algorithm of the straight line components of lane markings and an obstacle in the travelling lane region is proposed. This algorithm also involve the pitching error correction algorithm due to traveling vehicle's fluctuation. In order to reduce their error a practical road image modelling algorithm using V.F. model and camera calibration procedure are suggested to adapt the geometric variations. It is obtained the 3D world coordinate data by the 2D road images. In experimental test, we showed that this algorithm is available to recognize lane markings and an obstacle in the traveling lane.

  • PDF

Calculation of Dumping Vehicle Trajectory and Camera Coordinate Transform for Detection of Waste Dumping Position (폐기물 매립위치의 검출을 위한 매립차량 궤적 추적 계산 및 카메라 좌표변환)

  • Lee, Dong-Gyu;Lee, Young-Dae;Cho, Sung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.243-249
    • /
    • 2013
  • In waste repository environment, we can process the waste history efficiently for reuse by recording the history trajectory of the vehicle which loaded waste and the dumping position of the waste vehicle. By mapping the unloaded waste to 3D and by extracting the dumping point, a new method was implemented so as to record the final dumping position and the waste content under various experiments. In this paper, we developed the algorithm which tracking the vehicle and deciding the moment of dumping in landfills. We first trace the position of vehicle using the difference image between current image and background image and then we decide the stop point from the shape of vehicle route and detect the dumping point by comparing the dumping image with the image that vehicle is stopping. From the camera parameters, The transform method between screen coordinate and real coordinate of landfills is proposed.

Convenient View Calibration of Multiple RGB-D Cameras Using a Spherical Object (구형 물체를 이용한 다중 RGB-D 카메라의 간편한 시점보정)

  • Park, Soon-Yong;Choi, Sung-In
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.309-314
    • /
    • 2014
  • To generate a complete 3D model from depth images of multiple RGB-D cameras, it is necessary to find 3D transformations between RGB-D cameras. This paper proposes a convenient view calibration technique using a spherical object. Conventional view calibration methods use either planar checkerboards or 3D objects with coded-pattern. In these conventional methods, detection and matching of pattern features and codes takes a significant time. In this paper, we propose a convenient view calibration method using both 3D depth and 2D texture images of a spherical object simultaneously. First, while moving the spherical object freely in the modeling space, depth and texture images of the object are acquired from all RGB-D camera simultaneously. Then, the external parameters of each RGB-D camera is calibrated so that the coordinates of the sphere center coincide in the world coordinate system.