• Title/Summary/Keyword: 종합 진동 모니터링 시스템

Search Result 2, Processing Time 0.018 seconds

An Experimental Study for Integrated Vibration Monitoring System Development in Marine Diesel Engine (선박용 디젤 엔진의 종합 진동 모니터닝 시스템 개발을 위한 실험적인 연구)

  • Lee, D.C.;Joo, K.S.;Nam, T.K.;Kim, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.880-885
    • /
    • 2007
  • Diesel engines have been widely used in ships and power plants because of its higher thermal efficiency, mobility and durability compared to other prime movers. Though these merits, diesel engine including main components are sometimes vibrated due to higher combustion pressure in cylinders. Especially torsional, axial and structural vibrations in propulsion shafting may be severely manifested by the malfunction of torsional and axial dampers and misfiring and unbalanced load in cylinder. The structural vibration of main body and turbocharger core hole are also occurred by the loosen top bracing and excess wear-out or failure of turbocharger's bearings. The marine diesel engine should be safely designed from these vibrations. This paper introduces experimental methods to develop the prototype of integrated vibration monitoring system for marine diesel engine.

  • PDF

Integrated Sensing Module for Environmental Information Acquisition on Construction Site (건설현장 환경정보 수집을 위한 통합 센싱모듈 개발)

  • Moon, Seonghyeon;Lee, Gitaek;Hwang, Jaehyun;Chi, Seokho;Won, Daeyoun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.85-93
    • /
    • 2024
  • The monitoring of environmental information (e.g. noise, dust, vibration, temperature, humidity) is crucial to the safe and sustainable operation of a construction site. However, commercial sensors exhibit certain drawbacks when applied on-site. First, the installation cost is prohibitively high. Second, these sensors have been engineered without considering the rugged and harsh conditions of a construction site, resulting in error-prone sensing. Third, construction sites are compelled to allocate additional resources in terms of manpower, expenses, and physical spaces to accommodate individual sensors. This research developed an integrated sensing module to measure the environmental information in construction site. The sensing module slashes the installation cost to 3.3%, is robust enough to harsh and outdoor sites, and consolidates multiple sensors into a single unit. The sensing module also supports GPS, LTE, and real-time sensing. The evaluation showed remarkable results including 97.5% accuracy and 99.9% precision in noise measurement, an 89.7% accuracy in dust measurement, and a 93.5% reliability in data transmission. This research empowers the collection of substantial volumes and high-quality environmental data from construction sites, providing invaluable support to decision-making process. These encompass objective regulatory compliance checking, simulations of environmental data dispersion, and the development of environmental mitigation strategies.