• Title/Summary/Keyword: 종합누설률시험

Search Result 6, Processing Time 0.018 seconds

A Study on the Effect of Integrated Leakage Rate Testing of Containment Vessel due to the Type A Testing Time (격납건물 ILRT 본시험시간이 시험에 미치는 영향에 관한 연구)

  • Kim, Chang-Soo;Moon, Yong-Sig
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.3
    • /
    • pp.1-6
    • /
    • 2012
  • The containment Integrated Leakage Rate Testing(ILRT) of nuclear power plants in Korea is performed in accordance with NSSC(Nuclear Safety and Security Commission) code 2012-16 and ANSI/ANS 56.8-1994. Nuclear power plants in Korea and the United States are to apply same test criteria, ANSI/ANS 56.8-1994, except type A testing time. NPPs in Korea apply 24 hours according to NSSC code 2012-16, but NPPs in United States apply 8 hours according to 10CFR50 App. J for type A test. So, there are many difficulties in order to perform ILRT in Korea. In this study, I review the impact on the ILRT results and the effect of ILRT due to type A testing time. The future, we will continue study to enhance the test reliability and improve these problems.

Risk Assessment of Integrated Leak Rate Test(ILRT) Extension for Korea Standard Nuclear Power Plant (한국표준형원전의 격납건물종합누설률 시험 주기연장에 대한 리스크 평가)

  • Chi, Moon-Goo;Hwang, Seok-Won;Oh, Ji-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.99-104
    • /
    • 2011
  • An ILRT Interval for a nuclear power plant in Korea was extended from once in five years to once in ten years. Therefore, it is necessary to evaluate risk impact for ILRT interval extensions. In this paper, input data were generated for the reference plants, KSNP, using raw data such as meteorological data, population distribution data and source term data. And, using MACCS II code the risk impact assessment was performed based on the two methodologies of NUREG-1493 and NEI Interim Report. The risk impact derived from an ILRT interval extension was identified not to be significant. It is considered to apply this study and results to making an accident management plan and safety goal, and to the field of public acceptance.

Development of Web-based Off-site Consequence Analysis Program and its Application for ILRT Extension (격납건물종합누설률시험 주기연장을 위한 웹기반 소외결말분석 프로그램 개발 및 적용)

  • Na, Jang-Hwan;Hwang, Seok-Won;Oh, Ji-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.219-223
    • /
    • 2012
  • For an off-site consequence analysis at nuclear power plant, MELCOR Accident Consequence Code System(MACCS) II code is widely used as a software tool. In this study, the algorithm of web-based off-site consequence analysis program(OSCAP) using the MACCS II code was developed for an Integrated Leak Rate Test (ILRT) interval extension and Level 3 probabilistic safety assessment(PSA), and verification and validation(V&V) of the program was performed. The main input data for the MACCS II code are meteorological, population distribution and source term information. However, it requires lots of time and efforts to generate the main input data for an off-site consequence analysis using the MACCS II code. For example, the meteorological data are collected from each nuclear power site in real time, but the formats of the raw data collected are different from each site. To reduce the efforts and time for risk assessments, the web-based OSCAP has an automatic processing module which converts the format of the raw data collected from each site to the input data format of the MACCS II code. The program also provides an automatic function of converting the latest population data from Statistics Korea, the National Statistical Office, to the population distribution input data format of the MACCS II code. For the source term data, the program includes the release fraction of each source term category resulting from modular accident analysis program(MAAP) code analysis and the core inventory data from ORIGEN. These analysis results of each plant in Korea are stored in a database module of the web-based OSCAP, so the user can select the defaulted source term data of each plant without handling source term input data.