• Title/Summary/Keyword: 종자 수량

Search Result 353, Processing Time 0.021 seconds

Development of Late Bolting and New Deep Red Leaf with Wrinkled Lettuce 'Chunpungjeokchukmyeon' (추대가 늦고 색깔이 진한 새로운 잎상추 '춘풍적축면' 육성)

  • Jang, Suk-Woo;Hur, Youn-Young;Choi, Mi-Ja;Kwon, Young-Seok;Kim, Jeom-Sun;Lee, Jong-Nam;Lee, Eung-Ho;Seo, Myeong-Hun;Park, Jae-Ho;Jang, Ik;Jang, Mi-Hyang;Hwang, Hae-June;Ko, Sun-Bo
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.627-631
    • /
    • 2010
  • A new cultivar of lettuce (Lactuca sativa L.) with wrinkled traverse elliptic and deep red leaf, 'Chunpungjeokchukmyeon' which has late bolting and deep red expression leaf color was developed from a cross between 'Pojabijeokchukmyeon' (red leaf color and late bolting) and 'Meokchima' (Deep red and low yield). The cross and selection for advanced lines had been done by the pedigree method during 2000-2007. The advanced lines were evaluated for yield and adaptability at several locations in Korea (Gangwon-do, Gyeonggi-do, Chungcheongbuk-do, Jeollabuk-do, Gyeongnam-do, and Jeju-do) from 2008 to 2009. The 'Chunpungjeokchukmyeon' has gray seed color and traverse elliptic leaves. The type of matured stage is medium shape between 'chukmyeon' and 'chima' leaf lettuce. Compared to 'Dukseomjeokchukmyeon', marketable yield of 'Chunpungjeokchukmyeon' was higher by 6% (at 372 g per plant) and 'Chunpungjeokchukmyeon' has particularly improved expression of deep red leaf color in high temperature cultivation in the field. The shelf-life of 'Chunpungjeokchukmyeon' was three weeks longer than 'Dukseomjeokchukmyeon' at 4$^{\circ}C$. The anthocyanin content of 'Chunpungjeokchukmyeon' was higher than that of 'Dukseomjeokchukmyeon' with 17.5 mg/100g. The BSL (latucin+8-deoxylactucin+lactucopicrin) content of 'Chunpungjeokchukmyeon' is lower than that of 'Dukseomjeokchukmyeon'. Furthermore, its taste is better, more crispy, and sweeter than those of 'Dukseomjeokchukmyeon'. So we recommend that new cultivar 'Chunpungjeokchukmyeon' can be suitable for cultivation in spring season than summer season.

A New Soy-paste Soybean Cultivar, 'Nampung' with Disease Resistance, Good Combining Adaptability and High Yielding (장류용 내병 내재해 기계수확 적응 콩 신품종 '남풍')

  • Kim, Hyun-Tae;Baek, In-Youl;Ko, Jong-Min;Han, Won-Young;Park, Keum-Yong;Oh, Ki-Won;Yun, Hong-Tae;Moon, Jung-Kyung;Shin, Sang-Ouk;Kim, Sun-Lim;Oh, Young-Jin;Lee, Jong-Hyeong;Choi, Jae-Keun;Kim, Chang-Heung;Lee, Seung-Su;Jang, Young Jik;Kim, Dong-Kwan;Son, Chang-Ki;Kang, Dal-Soon;Kim, Yong-Deuk
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.721-726
    • /
    • 2010
  • 'Nampung', a new soybean cultivar for soy-paste, was developed from the cross between Suwon190 and 'Pokwangkong' by soybean breeding team at the National Institute of Crop Science (NICS) in 2007. A promising line, SS97215-S-S-20, was selected and designated as the name of Milyang162. It was prominent and had good result from regional adaptation yield trials(RYT) for three years from 2005 to 2007 and was released as the name of 'Nampung'. It has a determinate growth habit, white flower, brown pubescence, yellow seed coat, light brown hilum, medium spherical seed (19.9 grams per 100 seeds). 'Nampung' is resistant to soybean mosaic virus and bacterial pustule, the major soybean disease in Korea. It is possible to harvest of 'Nampung' using combine because of it's lodging tolerance, few branches, and high position of pod attachment. The average yield of 'Nampung' is 2.97 ton per hectare in the regional yield trials (RYT) carried out for three years from 2005 to 2007 which is 21 percent higher than the check variety, 'Taekwang'.

Genetic Analysis of Quantitative Characters of Rice (Oryza sativa L.) by Diallel Cross (이면교배(二面交配)에 의한 수도량적(水稻量的) 형질(形質)의 유전분석(遺傳分析)에 관(關)한 연구(硏究))

  • Jo, Jae-seong
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.254-282
    • /
    • 1977
  • To obtain information on the inheritance of the quantitative characters related with the vegetative and reproductive growth of rice, the $F_1$ seeds were obtained in 1974 from the all possible combinations of the diallel crosses among five leading rice varieties : Nongbaek, Tongil, Palgueng, Mangyeong and Gimmaze. The $F_1$'s including reciprocals and parents were grown under the standard cultivation method at Chungnam Provincial Office of Rural Development in 1975. The arrangement of experimental plots was randomized block design with 3 replications and 12 characters were used for the analysis. Analytical procedure for genetic components was followed the Griffing's and Hayman's methods and the results obtained are summarized as follows. 1. In all $F_1$'s of Tongil crosses, the longer duration to heading was due to dominant effect of Tongil and each $F_1$ showed high heterosis in delaying the heading time. It was assumed that non-allelic gene action besides dominant gene effect might be involed in days to heading character. However, in all $F_1$'s from the crosses among parents excluding Tongil the shorter duration was due to dominant gene action and the degree of dominance was partial, since dominance effects were not greater than the additive effect. The non-allelic gene interaction was not significant. Considering the results mentioned above, it was regarded that there were two kinds of Significantly different genetic systems in the days to heading. 2. The rate of heterosis was significantly different depending upon the parents used in the crosses. For instance, the $F_1$'s from Togil cross showed high rate of heterosis in longer culm. Compared to short culm, longer culm was due to recesive gene action and short culm was due to recesive gene action. The dominant gene effect was greater than the additive gene effect in culm length. The narrow sense of heretability was very low and the maternal effects as well as reciprocal effects were significantly recognized. 3. The lenght of the of the uppermost internode of each $F_1$ plant was a little lorger than these of respective parental means or same as those of parents having long internodes, indicating partial dominance in the direction of lengthening the uppermost internodes. The additive gene effects on the uppermost internode was greater than the dominance gene effect. The narrow as well as broad sense of heritabilities for the character of the uppermost internode were very high. There were significant maternal and reciprocal effect in the uppermost internode. 4. The gene action for the flag leaf angle was rather dominance in a way of getting narrower angle. However, in the Palgueng combinations, heterosis of $F_1$ was observed in both narrow and wide angles of the flag leaf. The dominant effects were greater than the additive effects on the flag leaf angle. There were observed also a great deal of non-allelic gene interacticn on the inheritance of the flag leaf angle. 5. Even though the dominant gene action on the length and width of flag leaf was effective in increasing the length or width of the flag leaf, there were found various degrees of hetercsis depending upon the cross combination. Over-dominant gene effect were observed in the inheritance of length of the flag leaf, while additive gene effects was found in the inheritance of the width of the flag leaf. High degree of heretabilities, either narrow or broad sense, were found in both length and width of the flag leaf. No maternal and reciprocal effect were found in both characters. 6. When Tongil was used as one parent in the cross, the length of panicle of $F_1$'s was remarkedly longer than that of parents. In other cross comination, the length of panicle of $F_1$'s was close to the parental mean values. Rather greater dominent gene effect than additive gene effect was observed in the inheritance of panicle length and the dominant gene was effective in increasing the panicle length. 7. The effect of dominant genes was effective in increasing the number of panicles. The degree of heterosis was largely dependent on the cross combination. The effect of dominant gene in the inheritance of panicle number was a little greater than that of additive genes, and the inheritance of panicle number was assumed to be due to complete dominant gene effects. Significantly high maternal and reciprocal effects were found in the character studied. 8. There were minus and plus values of heterosis in the kernel number per panicle depending upon the cross combination. The mean dominant effect was effective in increasing the kernel number per panicle, the degree of dominant effect varied with cross combination. The dominant gene effect and non-allelic gene interaction were found in the inheritance of the kernel number per panicle. 9. Genetic studies were impossible for the maturing ratio, because of environmental effects such as hazards delaying heads. The dominant gene effect was responsible for improving the maturing ratio in all the cross combinations excluding Tongil 10. The heavier 1000 grain weight was due to dominant gene effects. The additive gene effects were greater than the dominant gene effect in the 1000 grain weight, indicating that partial dominance was responsible for increasing the 1000 grain weight. The heritabilites, either narrow or broad sense of, were high for the grain weight and maternal or reciprocal effects were not recognized. 11. When Tongil was used as parent, the straw weight was showing high heterosis in the direction of increasing the weight. But in other crosses, the straw weight of $F_1$'s was lower than those of parental mean values. The direction of dominant gene effect was plus or minus depending upon the cross combinations. The degree of dominance was also depending on the cross combination, and apparently high nonallelic gene interaction was observed.

  • PDF