• Title/Summary/Keyword: 종자 개체

Search Result 375, Processing Time 0.029 seconds

Influence of heading date difference on gene flow from GM to non-GM rices (GM벼에서 non-GM벼로 유전자 이동에 대한 개화기 차이의 영향 분석)

  • Oh, Sung-Dug;Chang, Ancheol;Kim, Boeun;Sohn, Soo-In;Yun, Doh-Won
    • Journal of the Korean Society of International Agriculture
    • /
    • v.30 no.4
    • /
    • pp.347-356
    • /
    • 2018
  • Genetically modified (GM) crops have been increased continuously over the world and concerns about the potential risks of GM crops have also been increasing. Even though GM crops have not been cultivated commercially in Korea, it should be necessary to develop the safety assesment technology for GM crops. In this study, we investigated the influence of heading date difference on gene flow from GM to non-GM rice. In the experimental plot design, The PAC GM rice was placed in the center as a pollen donor and non-GM rice were placed in eight directions as pollen receivers. Five pollen receiver rice cultivars were Unkawng, Daebo, Saegyejinmi, Nakdong-byeo, and Ilmi which had different flowering times. A total of 266,436, 300,237, 305,223, 273,373, and 290,759 seeds were collected from Unkawng, Daebo, Saegyejinmi, Nakdong, and Ilmi, respectively, which were planted around PAC GM rice. The GM${\times}$non-GM hybrids were detected by repeated spraying of herbicide and PAT immunostrip assay. Finally, the hybrids were confirmed by PCR analysis using PAC gene specific primer. The hybrids were found in Nakdong-byeo which had the same heading date with PAC GM rice. The hybridization rate was 0.0007% at Nakdong-byeo plot. All of GM${\times}$non-GM hybrids were located within 2 m distance from the PAC GM rice zone. The physiological elements including rice heading date were found to be important factors to determine GM?rice out crossing rate with GM rice. Consideration should be taken into for many factors like the physiological elements of field heading date of rice cultivars to set up the safety management guideline for prevention of GM rice gene flow.

Distribution Types of the Relict Conifer Community and the Approach for the Ecological Management in Ulleung-Island (울릉도에 자생하는 침엽수류 유존군락의 분포유형과 생태적 관리방안에 대한 연구)

  • Cho, Hyun-Je;Lee, Jung-Hyo;Choo, Yeon-Sik;Hong, Sung-Cheon
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.95-104
    • /
    • 2011
  • Distribution types of native conifers (Juniperus chinensis, Pinus parviflora, Tusga sieboldii and Taxus cuspidata var. latifolia) were studied by phytosociological investigation and ZM method in Ulleung Island, South Korea. Two main types were divided maritime vegetation (Juniperus chinensis forest) and mountain vegetation (Taxus cuspidata var. latifolia forest and Pinus parviflora-Tusga sieboldii forest). The former was divided into sea cliff distribution (J-SC) and sea ridge distribution (J-SR) type. The latter was classified 7 distribution types; Taxus cuspidata var. latifolia forest was rock distribution (Ta-R) and mountain slope distribution (Ta-MS) type, and Pinus parviflora-Tusga sieboldii forest was rock distribution (P T-R), upper and ridge distribution (P T-UR, 3 units sub-types:1sub, 2sub, 3sub), and Mountain slope distribution (P T-MS) type. It was considered that J-SC, Ta- R, and P T-R were maintained by topographic climax, but J-SR, Ta-MS, P T-UR and P T-MS were the process of vegetation succession. Distribution types of topographic climax are entrusted to process of vegetation succession. Types in the process of vegetation succession will be needed tending of forest to promote saplings growth and seedlings germination. Especially in order to restore Tsuga sieboldii forest should be afforest and make forest gap because It is mid shade tolerant tree and purity percentage of its seed is 1~2%. It was considered that the composition of group mixture forest constituted Pinus parviflora, Tsuga sieboldii, Taxus cuspidata, Camellia japonica, Machilus thunbergii and Acer okamotoanum, etc. will be able to restore native vegetation, after take the form of forest gap by strong thinning and pruning of Pinus thunbergii forest.

Transplanting Date and Planting Density Affect the Growth Characteristics and Seed Yield of Italian Ryegrass (이앙 시기와 재식 밀도에 따른 이탈리안 라이그라스의 생육 및 종실 수량 특성 평가)

  • Yun-Ho Lee;Jeong-Won Kim;Hyeok-Jin Bak;Hyun-Ki Kim;Hyeon-Soo Jang;Dea-Yuk Kim;Jong-Tak Yoon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.438-444
    • /
    • 2023
  • Italian ryegrass (Lolium multiflorum Lam.; IRG) sowing season is delayed due to the autumn rainy season. Therefore, to address this problem, transplanting date and plant density were investigated. Transplant times investigated were October 20th, October 30th, and November 10th and planting densities were 50, 70, and 80 hills per 3.3 m2. The plant height, leaf area index, and plant coverage rate were high in the following order: October 20th, October 30th, and November 10th. There was no significant difference among planting densities. In addition, the number of tillers and dry weight before and after wintering were high on October 20th. In terms of yield components, the number of tillers, dry weight, and seed yield per unit area were higher with the transplanting date of October 20th than with transplanting on November 10th. There was no difference in seed yield between the planting densities of 80 and 70 hills per 3.3 m2. However, seed yield was low at 50 hills per 3.3 m2. In conclusion, the transplanting time for stable seed production is late October, and optimal plant density is 70 and 80 hills per 3.3 m2. A stable interplanting number before wintering will contribute to the seed yield.

Establishing Optimal Conditions for LED-Based Speed Breeding System in Soybean [Glycine max (L.) Merr.] (LED 기반 콩[Glycine max (L.) Merr.] 세대단축 시스템 구축을 위한 조건 설정)

  • Gyu Tae Park;Ji-Hyun Bae;Ju Seok Lee;Soo-Kwon Park;Dool-Yi Kim;Jung-Kyung Moon;Mi-Suk Seo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.304-312
    • /
    • 2023
  • Plant breeding is a time-consuming process, mainly due to the limited annual generational advancement. A speed breeding system, using LED light sources, has been applied to accelerate generational progression in various crops. However, detailed protocols applicable to soybeans are still insufficient. In this study, we report the optimized protocols for a speed breeding system comprising 12 soybean varieties with various maturity ecotypes. We investigated the effects of two light qualities (RGB ratio), three levels of light intensity (PPFD), and two soil conditions on the flowering time and development of soybeans. Our results showed that an increase in the red wavelength of the light spectrum led to a delay in flowering time. Furthermore, as light intensity increased, flowering time, average internode length, and plant height decreased, while the number of nodes, branches, and pods increased. When compared to agronomic soil, horticultural soil resulted in an increase of more than 50% in the number of nodes, branches, and pods. Consequently, the optimal conditions were determined as follows: a 10-hour short-day photoperiod, an equal RGB ratio (1:1:1), light intensity exceeding 1,300 PPFD, and the use of horticultural soil. Under these conditions, the average flowering time was found to be 27.3±2.48 days, with an average seed yield of 7.9±2.67. Thus, the speed breeding systems reduced the flowering time by more than 40 days, compared to the average flowering time of Korean soybean resources (approximately 70 days). By using a controlled growth chamber that is unaffected by external environmental conditions, up to 6 generations can be achieved per year. The use of LED illumination and streamlined facilities further contributes to cost savings. This study highlights the substantial potential of integrating modern crop breeding techniques, such as digital breeding and genetic editing, with generational shortening systems to accelerate crop improvement.

Genetic Diversity of Korean Native Chicken Populations in DAD-IS Database Using 25 Microsatellite Markers (초위성체 마커를 활용한 가축다양성정보시스템(DAD-IS) 등재 재래닭 집단의 유전적 다양성 분석)

  • Roh, Hee-Jong;Kim, Kwan-Woo;Lee, Jinwook;Jeon, Dayeon;Kim, Seung-Chang;Ko, Yeoung-Gyu;Mun, Seong-Sil;Lee, Hyun-Jung;Lee, Jun-Heon;Oh, Dong-Yep;Byeon, Jae-Hyun;Cho, Chang-Yeon
    • Korean Journal of Poultry Science
    • /
    • v.46 no.2
    • /
    • pp.65-75
    • /
    • 2019
  • A number of Korean native chicken(KNC) populations were registered in FAO (Food and Agriculture Organization) DAD-IS (Domestic Animal Diversity Information Systems, http://www.fao.org/dad-is). But there is a lack of scientific basis to prove that they are unique population of Korea. For this reason, this study was conducted to prove KNC's uniqueness using 25 Microsatellite markers. A total of 548 chickens from 11 KNC populations (KNG, KNB, KNR, KNW, KNY, KNO, HIC, HYD, HBC, JJC, LTC) and 7 introduced populations (ARA: Araucana, RRC and RRD: Rhode Island Red C and D, LGF and LGK: White Leghorn F and K, COS and COH: Cornish brown and Cornish black) were used. Allele size per locus was decided using GeneMapper Software (v 5.0). A total of 195 alleles were observed and the range was 3 to 14 per locus. The MNA, $H_{\exp}$, $H_{obs}$, PIC value within population were the highest in KNY (4.60, 0.627, 0.648, 0.563 respectively) and the lowest in HYD (1.84, 0.297, 0.286, 0.236 respectively). The results of genetic uniformity analysis suggested 15 cluster (${\Delta}K=66.22$). Excluding JJC, the others were grouped in certain cluster with high genetic uniformity. JJC was not grouped in certain cluster but grouped in cluster 2 (44.3%), cluster 3 (17.7%) and cluster8 (19.1%). As a results of this study, we can secure a scientific basis about KNC's uniqueness and these results can be use to basic data for the genetic evaluation and management of KNC breeds.