• Title/Summary/Keyword: 조향제어기

Search Result 107, Processing Time 0.032 seconds

A Development of Hardware-in-the Loop Simulation System For a Electric Power Steering System (전동식 동력 조향 장치 연구를 의한 HILS 시스템 개발)

  • Park, Dong-Jin;Yun, Seok-Chan;Han, Chang-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2883-2890
    • /
    • 2000
  • In this study, a Hardware-In-The-Loop-Simulation(HILS) system for developing a Electric-Power-Steering(EPS) system is designed. To test a EPS by HILS system, a mathematical vehicle model with a steering system model has been constructed. This mathematical model has been constructed. This mathematical model has been downloaded to the Digital-Signal-Processor(DSP) board. To realize the lateral force acting on the front wheel in a real car. the steering wheel angle sensor and vehicle velocity have been used for input signal. The force sensor has been used for a feedback signal. The full vehicle states could by simulated by the HILS system. Consequently, the HILS system could by used to analyze control-parameters of a EPS that contributes to the maneuverability and stability of a vehicle. At the same time, the HILS system can evaluate the whole performance of the vehicle-steering system. Also the HILS system could do test could not be executed in real vehicle. The HILs system will useful for developing the control logic for the EPS system.

Development of Fuzzy Streering Controller for Outdoor Autonomous Mobile Robot with MR sensor (MR센서를 이용한 실외형 자율이동 로봇의 퍼지 조향제어기 개발)

  • Kim, Jeong-Heui;Son, Seok-Jun;Lim, Young-Cheol;Kim, Tae-Gon;Ryoo, Young-Jae;Kim, Eui-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2365-2368
    • /
    • 2001
  • This paper describes a fuzzy steering controller for an autonomous mobile robot with MR sensor. Using the magnetic field($B_{x}$, $B_{y}$, $B_{z}$) obtained from the MR sensor, we designed fuzzy controller for driving on the road center. Fuzzy rule base was built to magnetic field($B_{x}$, $B_{y}$, $B_{z}$). To develop an autonomous mobile robot simulation program, we have done modeling MR sensor, dynamic model of mobile robot and coordinate transformation. A computer simulation of the robot (including mobile robot dynamics and steering) was used to verify the steering performance of the mobile robot controller using the fuzzy logic. Good results were obtained by computer simulation. So, we confirmed the robustness of the proposed fuzzy controller by computer simulation. Also, we know that proposed control algorithm was applied to real autonomous mobile robot.

  • PDF

A Control for Obstacle Avoidance with Steering and Velocity of a Vehicle Using Fuzzy (퍼지를 이용한 Vehicle의 조향각 및 속력을 고려한 충돌회피 제어)

  • Woo, Ji-Min;Kim, Hun-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.182-189
    • /
    • 1999
  • In this paper, we present an ultrasonic sensor based path planning method using fuzzy logic for obstacle avoidance of an intelligent vehicle in unknown environments. Generally, Robot navigation in unknown terrains is a very complex task difficult to control because of the great amount of imprecise and ambiguous sensor information that has to be considered. In this case, fuzzy logic can satisfactorily deal with such information in quite efficient manner. In this study, we propose two fuzzy logic controller which is composed of steering controller and velocity controller respectively. Our object is to develop a fuzzy controller that can enable a mobile robot to navigate from a start point to a goal point without collisions, in the least possible travel time. The ability and effectiveness for the proposed algorithm will be demonstrated by simulation and expeiment.

  • PDF

A Study on UCT Automatic Steering Control using TDOF PID Controller (2자유도 PID 제어기를 이용한 UCT의 조향제어에 관한 연구)

  • Son, Ju-Han;Lee, Young-Jin;Lee, Jin-Woo;Cho, Hyun-Cheol;Lee, Man-Hyeung;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.972-975
    • /
    • 1999
  • Until now, all of the port goods are transported by container transporter driven manually but recently there are a lot of researches about unmanned vehicle driven automatically. In this paper, we present a design of the TDOF PID controller using a hybrid schematic algorithm to control steering system. We used the ES and SA algorithms to construct hybrid tuning algorithm. Then the computer simulation shows that our proposed controller has better Performances than the other one.

  • PDF

Design of Lane Keeping Steering Assist Controller Using Vehicle Lateral Disturbance Estimation under Cross Wind (횡풍하의 차량 외란 추정을 이용한 차선 유지 조향 보조 제어기 설계)

  • Lim, Hyeongho;Joa, Eunhyek;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.13-19
    • /
    • 2020
  • This paper presents steering controller for unintended lane departure avoidance under crosswind using vehicle lateral disturbance estimation. Vehicles exposed to crosswind are more likely to deviate from lane, which can lead to accidents. To prevent this, a lateral disturbance estimator and steering controller for compensating disturbance have been proposed. The disturbance affecting lateral motion of the vehicle is estimated using Kalman filter, which is on the basis of the 2-DOF bicycle model and Electric Power Steering (EPS) module. A sliding mode controller is designed to avoid unintended the lane departure using the estimated disturbance. The controller is based on the 2-DOF bicycle model and the vision-based error dynamic model. A torque controller is used to provide appropriate assist torque to driver. The performance of proposed estimator and controller is evaluated via computer simulation using Matlab/Simulink.

A Study on UCT Steering Control using NNPID Controller (신경회로망 자기동조 PID 제어기를 이용한 UCT의 조향제어에 관한 연구)

  • 손주한;이영진;이진우;조현철;이권순;이만형
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.363-369
    • /
    • 1999
  • In these days, there are a lot of studies in the port automation, for example, unmanned container trasporter, unmanned gantry crain, and automatic terminal operation systems and so on. In terms of loading and unloading equipments. we can consider container transporter. This paper describes the automatic control for the UCT(unmanned container transporter), especially steering control systems. UCT is now operated on ECT port in Netherland and tested on PSA ports in Singapore. So we present a design on the controller using neural network PID(NNPID) controller to control the steering system and we use the neural network self-tuner to tune the PID parameters. The computer simulations show that our proposed controller has better performances than those of the other.

  • PDF

A Study on the Performance Evaluation of Antilock Brake Controller for a Heavy Vehicle (대형차량 정착용 미끄럼방지 제동장치 전자제어기의 성능평가에 관한 연구)

  • Lee, Ki-Chang;Jeon, Jung-Woo;Hwang, Don-Ha;Nam, Taek-Kun;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2025-2027
    • /
    • 2003
  • 미끄럼방지 제동장치는 차량의 급제동 시 바퀴의 장김을 방지하여, 바퀴의 슬립을 최적으로 유지 시킴으로써 제동거리를 단축시키고, 운전자가 차량 조향성을 유지할 수 있게 만드는 차량 안정장치이다. 이 장치는 비행기의 착륙거리를 줄이기 위해 개발된 이래로, 철도 및 차량 등에도 널리 적용되고 있으며, 국내에서도 이미 승용차를 위주로 양산되고 있는 추세이다. 이러한 미끄럼방지 제동 장치는 공압 브레이크 장치를 사용하는 대형차량 분야에서는 아직 국내에서 적용된 사례가 없었으나, 지난 3 년간의 연구개발의 성과로 대형 버스에 적용 가능한 미끄럼방지 제동장치의 전자제어기가 개발 완료되었으며, 국제 규격을 바탕으로 국내 현실에 적합한 미끄럼방지 제동장치 장착 대형차량의 시험 규격을 정하여 이 규격에 의거 제동시험을 실시하고 개발 제어기의 성능을 평가하였다. 각 제동 시험은 $\mu$-Jump 제동시험 및 Split-$\mu$ 제동시험 등의 직진 주행 중 급제동시험, 급제동 중 차선변경 시험, 장애물 회피 제동시험 등을 포괄하며 국제적인 규격을 기준으로 정한 독자 규격을 만족하였다. 본 논문에서는 공압 브레이크를 장착한 대형차량의 미끄럼방지 제동장치의 제동성능평가 시험방법을 소개하고, 이 방법에 의해 성능평가 시스템 및 측정 시스템을 구성하여, 개발 전자제어기의 우수성을 확인하였으며, 그 측정결과의 일부를 제시하였다.

  • PDF

A Study on Maneuvering Control Algorithm Based on All-wheel Independent Driving and Steering Control for Special Purpose 6WD/6WS Vehicles (전차륜 독립휠 구동 및 조향 제어 기반 특수목적용 6WD/6WS 차량의 주행제어 알고리즘 연구)

  • Lee, Daeok;Yeo, Seungtai
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.240-249
    • /
    • 2013
  • This paper discusses the maneuvering control algorithm based on all-wheel independent driving and steering control techniques for special purpose 6WD/WS vehicles. The maneuvering control algorithms considering superior dynamic characteristics of high power in-wheel motors and independent steering system are designed to perform driving, steering, vehicle stability, and fault tolerant control. The maneuvering controller applies sliding and optimal control theories considering optimal torque distribution and friction circle related to the vertical tire force. The fault tolerant control algorithm is applied to obtain the similar maneuverability to that of the non-faulty vehicle. The simulations using the Matlab/Simulink dynamics model and experiments using HIL simulator mounting the real controllers with the designed control algorithms prove the improved performances in terms of vehicle stability and maneuverability.

Development of a Fault-Tolerant Steer-By-Wire Control System (Fault-Tolerant Steer-By-Wire 제어 시스템의 개발)

  • Kim, Jae-Suk;Hwang, Woon-Gi;Lee, Woon-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.1-8
    • /
    • 2006
  • The Steer-By-Wire(SBW) system replaces complex mechanical linkages of the current steering system with electric motors, sensors, and electronic control units. However, the SBW system should guarantee its safety and reliability before commercialization, and therefore, a reliable and robust fault-tolerant technology has to be implemented. This paper proposes a fault-tolerant control algorithm for the SBW system. Based on careful analysis on propagation effects of sensor faults, a reliable fault-tolerant control strategy has been developed. The fault-tolerant controller consists of a fault detection part that monitors and detects faults in the steering wheel and road wheel sensors, and a reconfiguration part that switches to normal sensor signal based on fault detection information. It has been demonstrated by simulation that the proposed algorithm detects sensor faults accurately and enables reliable steering control under various dynamic fault situations.

Development of Ultrasound Sector B-Scanner(I)-Front End Hardware Part- (초음파 섹터 B-스캐너의 개발(I)-프론트 엔드 부분-)

  • 권성재;박종철
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.59-66
    • /
    • 1986
  • A prototype ultrasound sector B-scanner has been developed where the front-end hardware refers to all the necessary circuits for transmitting the ultrasound pulses into the human body and receiving the reflected echo signals from it. The front-end hardware can generally be divided into three parts, i.e., a pulse generator for insonification, a receiver which is responsible for processing of low-level analog signals, and a steering controller for driving the mechanical sector probe whose functions and design concepts are described in this paper. The front-end hardware is implemented which incorporates the following features: improvement of the axial resolution using a circuit which reduces the ring-down time, flexibility of generating time-gain compensation curve, and adoption of a one-chip microcomputer for generating the rate pulses based on the sensor output waveforms.

  • PDF