• Title/Summary/Keyword: 조직 가중인자

Search Result 2, Processing Time 0.014 seconds

Definition and Difference between Dose Equivalent and Equivalent Dose in Radiation Dose Measurement and Evaluation (방사선량의 측정, 평가에서 선량당량(dose equivalent)과 등가선량(equivalent dose)의 정의 및 차이)

  • Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 1993
  • In its recent recommendation No. 60(1990), ICRP has newly introduced several terminology which had not existed in its prior recommendation No. 26(1977). Of these, a newly defined quantity 'Equivalent Dose' replacing the 'Dose Equivalent' of the ICRU concept has been recommended to be adopted in the radiation protection programme. However, since the committee still uses the 'Dose Equivalent' and 'Equivalent Dose' in its several publications, it is likely to provoke unnecessary confusions and misuses in applying these two quantities. In this paper were described the definition and difference between these two quantities to help in understanding of these two quantitites among the person involved in the radiation protection activities.

  • PDF

A New Approach for the Calculation of Neutron Dose Equivalent Conversion Coefficients for PMMA Slab Phantom (PMMA 평판형 팬텀에서의 중성자 선량당량 환산계수의 새로운 계산법)

  • Kim, Jong-Kyung;Kim, Jong-Oh
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.297-311
    • /
    • 1996
  • ANSI decided PMMA slab phantom as a calibration phantom and introduced a conversion coefficient calculation method for it. For photon, the conversion coefficient can be obtained by using backscatter factor and conversion coefficient of the ICRU tissue cube and backscatter factor of the PMMA slab. For neutron, however, the ANSI has not introduced any conversion coefficient calculation method for the PMMA slab. In this work, the ANSI method for the photon conversion coefficient calculation was applied to the neutron conversion coefficient calculation of the PMMA slab. Quality weighted tissue kerma of neutron was applied to calculate the backscatter factors on the ICRU cube and the PMMA slab. The dose conversion coefficient of the ICRU cube was also calculated by using MCNP code. Then, the dose conversion coefficient of the PMMA slab was calculated from two backscatter factors and the dose conversion coefficient of the ICRU cube. The discrepancies of the dose conversion coefficients of the PMMA slab and the ICRU cube were less than 10% except 1eV(20%), 1keV(17%), and 4 MeV(16%).

  • PDF