• Title/Summary/Keyword: 조종운동 시뮬레이션

Search Result 72, Processing Time 0.03 seconds

A Study on Translational Motion Control in Integrated Control System for Ship Steering Motion (선박 조종운동을 위한 통합제어시스템에서의 이동운동제어에 관한 연구)

  • Woo, Ju-Eun;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.32-44
    • /
    • 2015
  • In general, a series of ship steering motion is represented by the combination of translational motion and rotational motion of the ship. Especially, special-functioned ships such as large-scale cruises, ships for installing underwater optical cable, and diver ships must be able to reveal only a translational motion without the change of orientation. In this paper, a method to comprise an integrated control system based on the joystick as a command instrument for translational motion control is suggested. In order to realize the translational motion control system, several algorithms are suggested including the velocity command generation, the selection of motional variables, and the generation and tracking of reference inputs for the selected motional variables. A simulation bench is composed to execute simulations for several translational motion commands. At last, the effectiveness of the proposed method is verified by analyzing the simulation results.

A Study on Numerical Simulation for Predicting of Unmanned Undersea Vehicle's Manoeuvrability (수중운동체의 조종성능 예측을 위한 수치시뮬레이션에 대한 연구)

  • Bae, Jun-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.83-85
    • /
    • 2015
  • The Purpose of this paper was to carry out basic study on development of real-time submarine-hnadling simulator. The author adopt the Unmanned Undersea vehicle(UUV), which has taken the shape of manta[1]. They call here it Unmanned Undersea Vehicle(UUV). UUV is based on the same design concept as UUV called Manta Test Vehicle, which was originally built by the Naval Undersea Warfare Center, USA[1]. The present study deals with prediction of manoeuvring motion of UUV at general drift angles and large drift angles. The dynamic mathematical model with six degrees of freedom is revised and supplemented in order to describe accurately motion of UUV. The hydrodynamic derivatives related to motion are obtained from previous work[2].

  • PDF

Hydrodynamic Forces and Maneuvering Characteristics of Ships at Low Advance Speed (저속시 선체에 작용하는 조종유체력 및 조종성능에 관한 연구)

  • Kyoung-Ho Sohn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.90-101
    • /
    • 1992
  • Some practical methods have already been proposed for predicting the characteristics of ship manoeuvring motions at relatively high advance speed. However, these methods can hardly be applied to motions of ships in starting, stoppint, backing and slow steaming conditions, even though such extensive motions are of vital importance from a safety point of view particularly in harbour areas. The method presented here aims at predicting the characteristics of ship manoeuvring at low advance speed, which covers starting, stopping, backing and slow steaming conditions. The force mathematical models at large angles of incidence to the hull as well as under the tilde range of propeller operations are formulated. Simulations of various manoeuvres at low advance speed are carried out for two types of merchant ship, i.e. a LNGC and a VLCC. Comparisons between simulations and corresponding full-scale measurements or free-running model tests provide a first verification of the proposed mathematical models.

  • PDF

A Study for the Conceptual Design of a Small Leisure Boat Handling Simulator (레저보트 조종시뮬레이터 개념설계에 관한 연구)

  • Kang, Nam Seon;Yoon, Hyeon Kyu
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.99-107
    • /
    • 2013
  • In this study, a conceptual study was performed for the leisure boat simulator used for navigation training. The aim of this work was to secure the basic operational capability of a leisure boat as a simulated driving device for a general novice operator. A leisure boat simulator was designed to support a user more efficiently regarding navigation proficiency and safety training, as well as to minimize the limitation of place and time and it conveniently and cheaply. A cockpit for navigation status display and operational input, 3D visualization graphic device, and parallel display device were designed to give the trainee a maximum sense of reality by applying a motion platform with six degree of freedom, in which disturbance movement such waves, winds, and tide were simulated for the operator. Leisure boat simulator training scenario was developed by analysis of water-related leisure activities act and sea traffic safety act.

Hydrodynamic Forces and Manoeuvring Characteristics of Ships at Low Advance Speed (저속시 선체에 작용하는 조종유체력 및 조종성능에 관한 연구)

  • Sohn, Kyoung-Ho
    • Journal of the Korean Institute of Navigation
    • /
    • v.15 no.4
    • /
    • pp.27-39
    • /
    • 1991
  • One practical method has already been proposed for predicting the characteristics of ship manoeuvring motions at relatively high advance speed [19]. Howeverf, this method can hardly be applied to motions of ships in starting, stopping, backing and slow steaming conditions, even though such extensive motions are of vital importance from a safety point of view particularly in harbour areas. The method presented here aims at predicting the characteristics of ship manoeuvring at low advance speed, which covers starting, stopping, backing and slow steaming conditions. The force mathematical models at large angles of incidence to the hull as well as under the wide range of propeller operations are formulated. Simulations of various manoeuvres at low advance speed are carried out for two types of merchant ship, I.e. a LNGC and a VLCC. Comparisons between simulations and corresponding full-scale measurements [10], [15] or free-running model tests [6],[10] provide a first verification of the proposed mathematical models.

  • PDF

System Configuration of Ship-handling Simulator Based on Distributed Data Processing Network -With Particular Reference to Twin-Screw and Twin-Rudder Ship- (분산처리네트워크에 기반한 선박조종 시뮬레이터의 시스템 구축에 관한 연구 -2축2타선박을 대상으로-)

  • Kyoung-Ho Sohn;Yong-Min Kim;Seung-Yeul Yang;Ki-Young Hong
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.4
    • /
    • pp.443-453
    • /
    • 2001
  • 선박조종시뮬레이터는 해기사의 교육 훈련, 항만 수로 설계 시 안전성 평가, 선박설계시 조종성능의 검토등으로 널리 활용되고 있다. 본 논문은 최근 한국해양대학교에서 개발한 선박조종시뮬레이터를 소개하고 개발 과정과 활용에 대하여 논의한다. 본 시뮬레이터는 Operation Panel, Instructor's Console, Ship Dynamics Calculation, 3D Bridge View, 2D Bird's Eye View 및 Navigational Indicators의 6구성요소로 이루어져 있으며, 이를 위해 8대의 퍼스널 컴퓨터가 배치되어 있다. 모든 구성요소들은 효율적인 정보 교환을 위하여 분산처리네트워크 방식으로 연결되어 있다. 또한, 본 논문은 항만내에서의 저속 시 조종운동 수학모델과 가상현실 모델링에 대해서도 논의한다. 마지막으로, 부산항에 대한 2축2타선박의 접안 조종 시뮬레이션 예를 보여주고 있다.

  • PDF

9-DOF Modeling and Turning Flight Simulation Evaluation for Parachute (9-DOF 낙하산 모델링 및 선회비행 시뮬레이션 검증)

  • Lee, Sang-Jong;Min, Byoung-Mun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.688-693
    • /
    • 2016
  • This paper describes the parachute dynamics modeling and simulation results for the development of training simulator of a HALO (High Altitude Low Opening) parachute, which is currently in use for military purposes. The target parachute is a rectangular shaped parafoil and its dynamic model is derived based on the real geometry data as the 9-DOF nonlinear equations of dynamics. The simulation was conducted through the moment of inertia and its aerodynamic derivatives to reflect the real characteristics based on the MATLAB/Simulink. In particular, its modeling includes the typical characteristics of the added mass and moment of inertia, which is shown in the strong effects in Lighter-Than-Air(LTA) flight vehicle. The proposed dynamic modeling was evaluated through the simulation under the spiral turning flight conditions of the asymmetric control inputs and compared with the performance index in the target parachute manual.

A Study of the Automatic Berthing System of a Ship Using Artificial Neural Network (인공신경망을 이용한 선박의 자동접안 제어에 관한 연구)

  • Bae, Cheol-Han;Lee, Seung-Keon;Lee, Sang-Eui;Kim, Ju-Han
    • Journal of Navigation and Port Research
    • /
    • v.32 no.8
    • /
    • pp.589-596
    • /
    • 2008
  • In this paper, Artificial Neural Network(ANN) is applied to automatic berthing control for a ship. ANN is suitable for a maneuvering such as ship's berthing, because it can describe non-linearity of the system. Multi-layer perceptron which has more than one hidden layer between input layer and output layer is applied to ANN. Using a back-propagation algorithm with teaching data, we trained ANN to get a minimal error between output value and desired one. For the automatic berthing control of a containership, we introduced low speed maneuvering mathematical models. The berthing control with the structure of 8 input layer units in ANN is compared to 6 input layer units. From the simulation results, the berthing conditions are satisfied, even though the berthing paths are different.

A Study for Reliability Improvement of Ship Maneuvering Applying Simulation (시뮬레이션 기법을 적용한 선박 조종 신뢰성 향상 연구)

  • Choe, Hang-Soeb;Park, Dong-Ho;Park, Jin-Ho;Jin, Min-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1819-1820
    • /
    • 2007
  • 국제해사기구(IMO: International Maritime Organization)의 선박 조종성능에 관한 기준이 발효되고, 최근 환경에 대한 관심이 지속적으로 증가하는 것과 더불어 항해 안전성, 특히 해난사고에 기인한 해양오염 방지에 관한 관심이 증가함에 따라 초기 설계단계에서부터 선박의 조종성능을 정확히 추정하는 것이 매우 중요하게 되었다. 본 논문에서는 선박 조종성능을 추정할 수 있도록 선박 고유 조종 운동 특성을 선박운항에 관련한 항해센서와 함께 선박 운항에 동일한 운전 조건으로 구성하고 HILS(Hardware In the Loop Simulation)을 적용하여 선박조종 신뢰성을 향상 시킬 수 있는 방법을 제시한다.

  • PDF

On the interaction effects between ships in confined water including the effect of wind and current (외력의 영향을 고려한 제한수역에서 선박간의 상호작용)

  • Lee, Chun-Ki;Kang, Il-Kwon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.2
    • /
    • pp.112-119
    • /
    • 2003
  • 제한수역에서 바람과 조류와 같은 외력을 받으며 항행하는 선박들 사이에는 대양에서 항행할 때와는 달리 상호간에 여러 가지 작용이 일어나면서 선박의 안전이 위협받는 수가 많다. 본 연구에서는 협수로와 같은 제한수역에서, 해난사고를 피하기 위해 요구되어지는 선박들간의 적절한 안전속도 및 안전거리를 제안하기 위해 선장비, 속도비, 풍향, 풍속, 유향 및 유속 등을 파라메타로 해서 조종운동 시뮬레이션 계산을 행하였다. 시뮬레이션 계산 결과, 두 선박 간의 상호 영향은 대형선박에 비해서 소형선박에 보다 크게 작용하는 것으로 나타났고, 속도비 1.2 의 경우가 속도비 0.6, 1.5의 경우보다 매우 크게 나타났다. 한편, 외력하에서 항행하는 두 선박에 있어서, 고속 선박에 비해서 저속 선박에 미치는 외력의 영향은 상당히 크게 작용하기 때문에 조선할 때, 이 점에 유의하여 항행해야 함을 알 수 있었다.