• Title/Summary/Keyword: 조절 유전자

Search Result 1,375, Processing Time 0.029 seconds

Molecular Approaches for Cloning of Important Higher Plant Genes (고등식물의 유용 유전자 크로닝을 위한 분자적 접근)

  • ;Ala
    • KSBB Journal
    • /
    • v.10 no.1
    • /
    • pp.89-96
    • /
    • 1995
  • An Avabidofsis thaliana gene encoding phosphoribosyl anthranilate transferase is shown to be the gene that is defective in blue fluorescent trp 1 mutant plants. This gene, named PAT1, coding region is homologous to those for the phosphoribosyl anthranilate transferase from many microorganisms. This is due to a defect in tryptophan biosynthesis that leads to an accumulation of anthranilate, a fluorescent intermediate in the tryptophan pathway. PAT1 is a single-copy gene that complements all of the visible phenotypes of the different trp1 mutants. Experiments to determine the regulation of the PAT1 gene are in progress. The wild-type PAT1 promoter and several promoter deletions of PAT1 gene have been transformed into Arabidopsis tryptophan mutants. These constructs might identify promoter elements that control this patterns. We have isolated the homozygous lines in T3 seeds and analysed the protein levels using PAT antibody and PAT protein level increased two fold in pHSl07. Finally, the potential of using PAT1 as a selectable marker or visible reporter of gene expression is being explored.

  • PDF

산천어의 생식선자극호르몬 유전자발현에 미치는 에스트로젠의 영향과 에스트로젠수용체 cDNA cloning

  • 손영창;최은주;김지영
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.25-25
    • /
    • 2003
  • 어류의 번식활동은 뇌-뇌하수체-생식소로 이어지는 내분비기관이 주로 담당하고 있으며, 그 중에서 뇌하수체에서 만들어지는 생식선자극호르몬 (GTH)은 생식소 발달에 매우 중요한 역할을 한다. 한편, GTH는 생식소에서 생성되는 스테로이드호르몬에 의해 유전자의 발현이 조절된다. 본 연구에서는 산천어 (Oncorhynchus masou)의 GTH 유전자발현에 미치는 estradiol-17$\beta$ (E2)의 영향을 생체내에서 먼저 조사하고, 유전자발현조절의 메카니즘을 구명하기 위하여 에스트로젠 수용체 (ER)의 cDNA를 cloning하였다. 또한 내분비교란물질로 알려져 있으며 에스트로젠 수용체와의 유사결합작용이 알려진 노닐페놀 (NP)의 영향도 아울러 조사하였다. 미성숙 산천어를 E2 및 NP (각각 5 mg/kg 및 10 mg/kg 체중)로 처리하면 72 시간째에 뇌하수체내의 $\beta$-actin mRNA에 비해 GTH (FSH$\beta$, LH$\beta$) mRNA가 상대적으로 증가하는 경향을 나타내었다. 뇌하수체에서 분리한 ER의 기본적인 구조는 DNA결합도메인 (Zf-C4), 호르몬결합도메인 (hormone_rec), 기타 전사활성화도메인으로 구성되어 있었으며 (그림 1), 기존에 보고된 에스트로젠 수용체중에서 무지개송어 및 대서양연어의 ER과 각각 98%, 96%의 높은 상동성이 관찰되었다. 향후, 준비된 ER을 재료로 하여 GTH 유전자발현의 호르몬의존성을 조사할 예정이다.

  • PDF

Isolation and Identification of Genes Regulated by Iron Using mRNA Differential Display (mRNA differential display를 이용한 철에 의해 조절되는 유전자들의 분리 및 동정)

  • Lee, Jung-Lim;Park, Jong-Hwan;Kim, Hae-Yeong
    • Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.123-127
    • /
    • 1999
  • Iron is an essential nutrient but potentially toxic element in human. To identify the effects of iron on the gene expression of mammalian cell, we have isolated several genes that are regulated by iron using the RNA differential display method. RNAs were isolated from HeLa cells treated with iron supplement or iron chelator. A total of 24 genes were isolated and of these, four genes were identified by DNA sequencing and northern blot.

  • PDF

Histone H3 Lysine Methylation in Adipogenesis (Adipogenesis에서 히스톤 H3 lysine methylation)

  • Jang, Younghoon
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.713-721
    • /
    • 2020
  • Adipogenesis as a model system is needed to understand the molecular mechanisms of human adipocyte biology and the pathogenesis of obesity, diabetes, and other metabolic syndromes. Many relevant studies have been conducted with a focus on gene expression regulation and intracellular signaling relating to Peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα), which are master adipogenic transcription factors. However, epigenome regulation of adipogenesis by epigenomic modifiers or histone mutations is not fully understood. Histone methylation is one of the major epigenetic modifications on gene expression in mammals, and histone H3 lysine methylation (H3Kme) in particular implicates cell differentiation during various tissue and organ development. During adipogenesis, cell type-specific enhancers are marked by histone H3K4me1 with the active enhancer mark H3K27ac. Mixed-lineage leukemia 4 (MLL4) is a major H3K4 mono-methyltransferase on the adipogenic enhancers of PPARγ and C/EBPα loci. Thus, MLL4 is an important epigenomic modifier for adipogenesis. The repressive mark H3K27me3 is mediated by the enzymatic subunit Enhancer zeste homolog 2 (EZH2) of the polycomb repressive complex 2. EZH2-mediated H3K27 tri-methylation on the Wnt gene increases adipogenesis because WNT signaling is a negative regulator of adipogenesis. This review summarizes current knowledge about the epigenomic regulation of adipogenesis by histone H3 lysine methylation which fundamentally regulates gene expression.

Hormonal Regulation of the Caprine $\beta$-Lactoglobulin Gene Promoter Activity (염소의 베타-락토글로불린 유전자 프로모터 활성의 호르몬에 의한 조절)

  • 김재만;김경진
    • The Korean Journal of Zoology
    • /
    • v.38 no.3
    • /
    • pp.426-432
    • /
    • 1995
  • Expression of $\beta$-lactoglobulin gene in mammary tissue is strongly induced by lactogenic hormones such as prolactin, glucocorticoid, and insulin. In order to elucidate the regulatory mechanism underlying such hormonal induction, the response of the caprine $\beta$-lactoglobulin gene promoter to lactogenic hormones was analyzed in cultured HC11 mammary cells. Expression with serial deletions of the 5' -regulatory sequence of the $\beta$-lactoglobulin promoter revealed that two regions are responsible for a substantial change in hormonal indudbility. The region upstream of-1692, which exhibited strong repression of the downstream promoter, mediated the induction by insulin. This insulin-response was independent of the other two lactogenic hormones, prolactin and glucocorticoid. The other region from -740 to -470, which showed strong activation of the $\beta$-lactoglobulin promoter in confluent HC11 mammary cells, mediated mainly the response to a glucocorticoid analogue, dexametasone. The induction by the latter region, however, was suppressed by the usptream repression without insulin treatment. These results suggest that the induction of $\beta$-lactoglobulin promoter activity by lactogenic hormones in mammary cells may be achieved by the combined action of derepression by in sulin and activation by glucocorticoid and prolactin. Dexametasone response by the latter region seems to be mediated by the glucocorticoid receptor site around -7OObp.

  • PDF

Analysis of Sequence on promoter of κ -casein Genes in Korean Native Cattle and Holstein (한우와 Holstein종의 κ -casein 유전자의 발현조절부위의 염기서열 분석)

  • Sang, Byung Chan;Ryoo, Seung Heui;Lee, Sang Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.27 no.1
    • /
    • pp.33-38
    • /
    • 2000
  • This study was carried out to investigate the characterizations of $\kappa$ -CN genes of milk protein. In order to find out the characterizations of $\kappa$ -CN genes, the nucleotide sequences of 5'-flanking regions of $\kappa$ -CN genes were analyzed by PCR(polymerase chain reaction) technique with specific primers in order to investigate the characterizations of these promoters in Korean Native cattle and Holstein. PCR products obtained 349bp fragment and the nucleotide sequences of Korean Native cattle and Holstein of $\kappa$ -CN gene S'-flanking region was analyzed to -82bp from -431bp. On the comparison of each breed, Holstein substituted T$\rightarrow$C at -386bp, and -241bp(T) and -192bp(C) existed, but Korean Native cattle was deleted. Also, Korean Native cattle was existed T at -183bp but Holstein was not. The homology analysis of between Korean Native cattle and Holstein was showed 98.9% homology for $\kappa$ -CN promoter.

  • PDF

Roles of Fisetin on Skin Barrier Function and Anti-aging in Epidermal Keratinocyte (각질형성세포에서 Fisetin의 피부장벽 기능 개선 및 항노화 효능 검증)

  • Lee, Kyung-Ha;Kim, Wanil
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.4
    • /
    • pp.391-401
    • /
    • 2020
  • Flavonoids are polyphenolic compounds derived from plants metabolites and are known to be capable of controlling various human physiological functions. Among them, fisetin (3,3', 3', 7-tetrahydroxyflavone) is found in various fruits and vegetables, and it has been recently known to restore the function of certain tissues through senolytic activity. In this study, targeting human epidermal keratinocytes, control of skin barrier genes and antioxidant efficacy of fisetin were analyzed. Fisetin increased the activity of telomerase and decreased the expression of CDKN1B. In addition, it increased the expression of KRT1, FLG, IVL, and DSP, which are main genes that make up the skin barrier. The fisetin also increased the expression of CerS3 and CerS4 genes, which are forms of ceramide synthases. These results show that the efficacy of fisetin is not limited as senolytics but is also involved in various physiological regulation of human keratinocytes. Therefore, we consider that fisetin could be used as an active ingredient in cosmetics and pharmaceuticals.

Analysis of the orf 282 Gene and Its Function in Rhodobacter sphaeroide 2.4.1 (R. sphaeroides 에서의 orf282 유전자의 분석과 이들의 기능)

  • Son, Myung-Hwa;Lee, Sang-Joon
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1009-1017
    • /
    • 2012
  • The orf282 gene of Rhodobacter sphaeroides is located between the ccoNOQP operon encoding $cbb_3$ terminal oxidase and the fnrL gene encoding an anaerobic activator, FnrL. Its function remains unknown. In an attempt to reveal the function of the orf282 gene, we disrupted the gene by deleting a portion of the orf282 gene and constructed an orf282-knockout mutant. Two FnrL binding sites were found to be located upstream of orf282, and it was demonstrated that orf282 is positively regulated by FnrL. The orf282 gene is not involved in the regulation of spectral complex formation. The $cbb_3$ oxidase activity detected in the orf282 mutant was comparable to that in the wild-type sample, indicating that the orf282 gene is not involved in the regulation of the ccoNOQP operon and the biosynthesis of the cbb3 cytochrome c oxidase. The elevated promoter activity of the nifH and nifA genes, which are the structural genes of nitrogenase and its regulator, respectively, in the orf282 mutant, suggests that the orf282 gene product acts as a negative effector for nifH and nifA expression.

Molecular Cloning and Expression of the Metallothionein Gene under Environmental Stresses in Sweet Potato (고구마 metallothionein 유전자의 클로닝 및 환경 스트레스 하에서 발현 분석)

  • Kim, Young-Hwa;Yu, Eun Jeong;Huh, Gyung-Hye
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1415-1420
    • /
    • 2017
  • The metallothionein (MT) gene (IbMT3) was selected from an EST library of suspension-cultured sweet potato cells. The MT gene, which is one of abundant ESTs in the library, is involved in stress regulation of cells and tissues. A full-length IbMT3 cDNA was obtained and analysis of its nucleotide sequence revealed that IbMT3 encoded a type 3 MT protein, based on its structural characteristics. The function of type 3 MT in plants is not yet known. Northern blot analysis showed stronger expression of IbMT3 in suspension-cultured cells than in sweet potato plant leaves. Since cell culture is known to impose a state of oxidative stress on cells, sweet potato plants were subjected to oxidative stress to investigate the transcriptional regulation of IbMT3. When the herbicide methyl viologen (MV) was administered for 6, 12, and 24 hr, IbMT3 transcription rapidly increased at 6 hr and then decreased. A cold treatment at $15^{\circ}C$ for 24 and 48 hr resulted in a gradual increase in IbMT3 expression. These findings indicate that IbMT3 expression is regulated in response to environmental and oxidative stress. IbMT3 isoform is expected to have antioxidant effects in sweet potato plants and may play an important role in cellular adaptation to oxidative stress.