• Title/Summary/Keyword: 조절 밸브

Search Result 246, Processing Time 0.025 seconds

Reliability Evaluation of Concentric Butterfly Valve Using Statistical Hypothesis Test (통계적 가설검정을 이용한 중심형 버터플라이 밸브의 신뢰성 평가)

  • Chang, Mu-Seong;Choi, Jong-Sik;Choi, Byung-Oh;Kim, Do-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1305-1311
    • /
    • 2015
  • A butterfly valve is a type of flow-control device typically used to regulate a fluid flow. This paper presents an estimation of the shape parameter of the Weibull distribution, characteristic life, and $B_{10}$ life for a concentric butterfly valve based on a statistical analysis of the reliability test data taken before and after the valve improvement. The difference in the shape and scale parameters between the existing and improved valves is reviewed using a statistical hypothesis test. The test results indicate that the shape parameter of the improved valve is similar to that of the existing valve, and that the scale parameter of the improved valve is found to have increased. These analysis results are particularly useful for a reliability qualification test and the determination of the service life cycles.

Studies on the Performance of a Cam Driving Electronic Expansion Valve for Vehicles (캠구동 방식을 적용한 자동차 공조시스템용 전자팽창밸브의 성능에 관한 연구)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.732-736
    • /
    • 2016
  • Air conditioning part designs are moving towards higher efficiency and productivity. The expansion device is one of the core parts of an air conditioning system and controls the refrigerant quantity, evaporation load, compression capacity, and condensation capacity. In this study, an electronic expansion valve for two working fluids ($CO_2$ and R134a) was developed for air conditioning systems in vehicles. The valve uses an eccentric cam driving structure instead of a lead screw to decrease manufacturing costs and increase productivity. The pressure resistance and flow rate performance was evaluated using numerical analysis. At maximum operation conditions and burst pressure conditions with $CO_2$, the maximum stresses on the valve model were about 98 MPa and 223 MPa, respectively. The maximum flow rates of $CO_2$ and R134a with different orifice openings were about 550 kg/h and 386 kg/h, respectively. The performance with R134a was verified by experiments.

Fabrication and Property of Water Level and Temperature Sensor for Medical Cooling System Using a Highly Sensitive GMR-SV Device (거대자기저항 스핀밸브 소자를 이용한 의료용 냉각기 수위 및 수온 센서의 제작과 특성)

  • Park, Kwang-Jun;Choi, Jong-Gu;Lee, Sang-Suk;Lee, Bum-Ju
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.32-36
    • /
    • 2011
  • We fabricated a sensor for measuring the water level and water temperature using GMR-SV (giant magnetoresistance-spin valve) device, simultaneously. It could be applied to the medical cooling system of the potassium titanylphosphate KTP) laser system for the therapy of a benign prostatic hyperplasia. The middle point of GMR-SV device was set to the near position of a high magnetic sensitivity with 2.8%/Oe. The sensitivity for the water level and water temperature of the fabricated sensor were $400\;m{\Omega}/mm$ and $100\;m{\Omega}/^{\circ}C$, respectively.

PTA-I test of KSR-III Propulsion Feeding System (KSR-III 추진기관 공급계 PTA-I 종합수류시험)

  • 권오성;정영석;조인현;정태규;오승협
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.22-29
    • /
    • 2003
  • The propulsion feeding system of KSR-III is composed of tubes, valves and PSC, and controls the flow of propellant entering to engine. The test of PTA-I is carried out to verify the characteristic of propulsion feeding system and component. The tests of operation characteristic of component, hydraulic characteristic of tubes, flow control using venturi, oscillation of dynamic pressure, characteristic of regulator are carried out. Troubles of component are found out, and renewed, and the performance of the propulsion feeding system is verified through PTA-I. The results of PTA-I are used to the configuration of propulsion feeding system and test of PTA-II.

An Experimental Study of the Effect of PDA valve on the Combustion Characteristics of the Spark Ignition Engine (PDA 밸브가 SI 엔진의 연소특성에 미치는 영향에 대한 실험적 연구)

  • 김대열;한영출
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.104-112
    • /
    • 2004
  • The Swirl is one of the important parameters that effects the characteristics of combustion. PDA valve has been developed to satisfy two requirements of achieving sufficient swirl generation for improving the combustion and still maintaining high volumetric efficiency. This paper presents the experimental results of the effect of PDA valve on characteristics of combustion in single cylinder spark ignition engine. As a result, the combustion stability can be greatly improved by PDA valve. The data from present study are available for design of engine as the basic data.

Measurement method for valve noise (밸브의 소음 측정 방법)

  • Lee, Y. B.;Yoon, B. R.;Kwon, H. S.;Park, K. A.;Yoo, S. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.433-438
    • /
    • 2001
  • Noise is one of the major environmental problems in human life. To reduce the noise emitted from the control valve it is necessary to develop the measurement method, measurement system, analysis method applicable to the field. In this study IEC and ISO standards were investigated and measurement method for the valve noise was proposed. Noise from the valve was measured in the reverberation room and sound power level was calculated. The sound power level increased as the flow rate and pressure difference increased. The noise characteristics are useful to predict valve noise for given conditions, to compare the performance of different valves and to develope low-noise valves.

  • PDF

A Numerical Study of Valve Lift on the Flow Characteristics in Gasoline Engine (가솔린 엔진에서 밸브리프트에 따른 유동특성에 관한 수치해석적 연구)

  • Kim, Dae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.81-88
    • /
    • 2008
  • Flow characteristics have one of the effects in the process of engine. The numerical analysis makes it possible to predict the flow fields. This paper presents characteristics of steady flow according to variation of valve lift in a gasoline engine. The numerical computations have been made to observe the pressure distribution in accordance with the variable valve lift. Characteristics of tumble flow and swirl flow according to the variable valve has also been investigated. We could find that tumble ratio and swirl ratio is different between with/without PDA valve. The steady flow test was simulated through three-dimensional analysis on intake port design for comparing with experimental data and confirming the feasibility of applying analytic method. As a result, this study shows the possibility of the usage of numerical simulation to predict the flow characteristics for gasoline engine.

Development of simulation program for TXV and capillary tube performance analysis (감온 팽창밸브 및 모세관 성능 시뮬레이션 프로그램 개발)

  • 박봉수;한창섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.170-180
    • /
    • 2000
  • The equation which is related to TXV performance was investigated. On the basis of this equation, the TXV simulation program was developed. Results of the developed TXV simulation program were proven by the experiment on the influence of pressure difference between TXV entrance and exit and equalizing pressure. Simulation results show very good agreement with experimental results, the RMS error between them was 1.83%. The capillary tube simulation program was made by the basic equation of fluid dynamics. Results of this program were proven by data which were experimented previously. The RMS error between simulation results and experimental results was 4.13% .

  • PDF

Performance of an inverter refrigeration system with a change of expansion devices (인버터형 냉동시스템의 팽창장치 변경에 따른 성능특성)

  • 이용택;김용찬;박윤철;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.928-936
    • /
    • 1999
  • An experimental study was performed to investigate characteristics of an inverter driven water-to-water refrigeration system with a variation of compressor frequencies and expansion devices. The frequency of a compressor varied from 30Hz to 75Hz, and performance of the systems applying three different expansion devices such as capillary tube, thermostatic expansion valve(TXV), and electronic expansion valve(EEV) were measured. The load conditions were altered by varying the temperature of the secondary fluid entering condenser and evaporator with a constant flow rate. When the test conditions were deviated from the standard value(rated value), TXV and EEV showed better performance than capillary tube due to optimum control of mass flow rate and superheat. In the present study, it was observed that the variable area expansion device had better performance than constant area expansion device in an inverter refrigeration system due to active control of flow area with a change of compressor frequency and load conditions.

  • PDF

Influence of valve plate configuration on torque ripple of a bi-directional bent-axis type hydraulic piston pump (양방향 회전형 사축식 유압 피스톤 펌프의 벨브 플레이트 형상이 토크 맥동에 주는 영향)

  • Kim, Sung-Hun;Hong, Yeh-Sun;Kim, Doo-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.231-237
    • /
    • 2007
  • The torque ripple of the hydraulic pumps for the Electro-hydrostatic Actuators can disturb the cylinder position control under slewing speed operation condition. In principle, the periodic change of the reaction torque generated by a piston type pump is highly dependent on the waveform of its cylinder chamber pressure. In case of uni-directional pumps operating at constant speed, the transient overshoot and rising slope of the cylinder pressure can be adjusted by the precompression angle and notch shape of their valve plates. Therefore, the influence of the valve plate geometry on the torque ripple magnitude of a bent-axis type piston pump for EHA application was investigated in this study. The results showed that any improvement of the torque ripple of such a bi-directional pump can not be achieved by modifying the valve plate geometry, regardless of its operation speed.