• Title/Summary/Keyword: 조재제

Search Result 89, Processing Time 0.029 seconds

Environmental Evaluation for the Remanufacturing of Rental Product Using the LCA Methodology (LCA기법을 이용한 랜탈 재제조품의 환경성 평가)

  • Kwak, In-Ho;Hwang, Young-Woo;Park, Kwang-Ho;Park, Ji-Hyoung;Seol, So-Young;Shin, Hwa-Jeong;Yang, Eun-Hyeok;Min, Gon-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.611-617
    • /
    • 2016
  • Remanufacturing that is the rebuilding of a product to specifications of the original manufactured product by collecting used-product, completely disassembling, cleaning and repairing or replacing with a new part and reassembling has been received attention in aspects of resource, recycling because it is a great environmental improvement. Remanufacturing is the rebuilding of a product to specifications of the original manufactured product by collecting used-product, completely disassembling, cleaning and repairing or replacing with a new part and reassembling. With a great environmental improvement and resource recycling and conservation, many studies were conducted. Up to date, remanufacturing activities are mainly applied to automobile parts and printer toner cartridge in South Korea. However, remanufacturing of rental product is not well conducted although rental products are collected in good condition and could be remanufactured in the same condition as a new product. Therefore, in this study, we conducted life cycle assessment (LCA) to an air cleaner product that is one of rental products. This study attempts to identify the processes in new products and remanufacturing life cycles that contribute the most environmental impacts. The results show that air cleaner remanufacturing could reduce about 20% of environmental impacts compared to new product. The greatest benefit related to environmental impact is with regard to ozone layer depletion potential (ODP), which is reduced by 94%. In the life cycle of air cleaner, raw material extraction stage had the most environmental impacts, especially with regard to abiotic depletion potential (ADP) and global warming potential (GWP). In the environmental impacts in each part, the ABS power had the highest environmental impacts.

Development of Cleaning System of Electronic Components for the Remanufacturing of Laser Copy Machine (레이저 복합기의 재제조공정을 위한 전자부품 세정시스템의 개발)

  • Bae, Jae-Heum;Chang, Yoon-Sang
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.287-294
    • /
    • 2012
  • In this study, performances of two cleaning methods were analyzed and a cleaning system was designed to develop a cleaning process of electronic components to remanufacture old laser copy machine. First, plasma cleaning as a dry cleaning method was executed to test cleaning ability. In cleaning of printed circuit board (PCB) by plasma, some damages were found near the metal parts, and considering the productivity, this method was not adequate for the cleaning of electronic components. With 4 different cleaning agents, ultrasonic cleaning tests were executed to select an optimal cleaning agent, aqueous agents showed superior cleaning performance compared to semi-aqueous and non-aqueous agents. Cleaning with aqueous cleaning agent A and 28 kHz ultrasonic frequency can be completed in 30 sec to 1 min. Finally, an ultrasonic cleaning system was constructed based on the pre-test results. Optimal cleaning conditions of 40 kHz and $50^{\circ}C$ were found in the field test. The productivity and economic efficiency in remanufacturing of laser copy machine are expected to increase by adapting developed ultrasonic cleaning system.

An Analysis of Greenhouse Gas Reduction effect of Automotive Engine Re-manufacturing throug Whole Process Analysis (전과정 분석을 통한 자동차엔진 재제조시 온실가스 저감효과 분석)

  • Ji-Hyoung Park;Han-Sol Lee;Yong-Woo Hwang;Young-Chun Kim;Chung-geun Lee
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.43-51
    • /
    • 2023
  • In this research, through LCA analysis, the environmental impact of automotive engine manufacturing and re-manufacturing was analyzed from the perspective of the entire process, and the greenhouse gas reduction effect was calculated based on this. The amount of greenhouse gas emitted from the process of acquiring and manufacturing raw materials for automotive engines is about 3,473 kg for new manufacturing and 872 kg for re-manufacturing. Thus, the amount of greenhouse gas reduction by engaging in re-manufacturing is about 2,601 kg; the analysis shows a reduction effect in each part of the entire process except for the processing stage. As a result of the LCA weighted analysis, the environmental impact of new product manufacturing was found to be 1.07E+03 Eco-point, and it was 2.67E+02 Eco-point for re-manufacturing. The share of GWP(Global Warming Potential) among the six major impact categories(Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential, Ozone-layer Depletion Potential, Photochemical Oxidant Creation Potential) as high at 99.72%(new manufacturing) and 99.68%(re-manufacturing).

Analysis of Throttle Body's Remanufacturing Process and RPN (스로틀바디의 재제조 공정 및 RPN 분석)

  • Son, Woo Hyun;Park, Sang Jin;Jeong, Jae Yeong;Kim, Jae Hyuk;Bin, Hyang Wook;Mok, Hak Soo
    • Resources Recycling
    • /
    • v.25 no.4
    • /
    • pp.11-22
    • /
    • 2016
  • In global automobile industry, the remanufacturing for used products has the merit to be reduced nearly 80 percent of energy consumption and resources of new product. The objective of this paper is the analysis of detailed remanufacturing processes about research object and failure modes of each process of throttle body which is one of automobile parts, to draw a FMEA and determine the degree of seriousness (S), detection (D) and occurrence (O) of many failures. And we compared the current RPN method of being used to calculate values of RPN with three suggested methods. : Summation method, Square root method, Volume method.

Remanufacturing Industry for Automobile Parts of European (유럽의 자동차부품 재제조산업에 관한 연구)

  • Mok, Hak-Soo;Jeon, Chang-Su;Han, Chang-Hyo;Park, Sang-Jin;SaKong, Hoon;Gunther, Seliger
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.38-44
    • /
    • 2011
  • Remanufacturing is restoring or manufacturing the worn-out or discarded components of an end of life product in order to bring it to the "like new" condition. The aim is to reprocess used products in such a manner that the quality of the products is as good as or better than the new one, in terms of appearance, reliability and performance. This paper investigates the automotive remanufacturing industry in Europe. To further knowledge in this field, the paper focuses on the remanufacturing of the automotive components of end-of-life vehicles. The paper scope emphasizes key remanufacturing companies, which are identified and were surveyed in terms of their business structures. The research aims to address the potential for growth within the remanufacturing industry, with regard to various players. The state of the art in remanufacturing of automotive equipment will be identified.

Remanufacturing Industry for Automobile Parts of USA (미국의 재제조산업에 관한 연구)

  • Mok, Hak-Soo;Jeon, Chang-Su;Han, Chang-Hyo;Skerlos, Steven J.;Kim, Hyung-Ju;Lee, Kyu-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.58-65
    • /
    • 2010
  • Remanufacturing is a process that restores old products to perform like new, while saving energy, reducing consumption of natural resources, and lowering environmental emissions. By extending the product life cycle, remanufacturing approaches enable closed loop material cycles that are ultimately necessary for a sustainable society. This paper provides some description of the current automotive remanufacturing enterprise, with a particular emphasis on key vehicle components that are currently remanufactured. The analysis yields two major conclusions. First, volume of the USA automotive after sales and remanufacturing industry market is estimated. Second, market price of a remanufactured component in the automotive sector is surprisingly uncorrelated with the number of companies engaged in remanufacturing that component - at least for companies registered with the Automotive Parts Remanufacturing Association (ARPA).

Evaluation of the Productivity and Environmental Effects of Laser Aided Direct Metal Deposition Process for Remanufacturing (재제조를 위한 레이저 직접 금속조형공정의 생산성 및 환경영향의 명가)

  • Chang, Yoon-Sang
    • Clean Technology
    • /
    • v.13 no.3
    • /
    • pp.228-234
    • /
    • 2007
  • In this study, the productivity and environmental effects of laser aided direct metal deposition (LADMD) process which is one of promising rapid manufacturing technology is evaluated. The production time predicted using PowerMill shows that the productivity of LADMD is superior to that of conventional milling process. Though LADMD is known as an environment-friendly technology, it has a disadvantage to utilize much energy to generate laser beam. Considering both productivity and environmental effects, LADMD is expected to be widely used in remanufacturing industry.

  • PDF

Selection of Alternative Cleaning Agents for Ultrasonic Cleaning Process in Remanufacturing of Used Laser Copy Machine (중고 레이저 복합기의 재제조 공정에서 초음파세정을 위한 대체 세정제의 선정)

  • Park, Yong-Bae;Bae, Jae-Heum;Chang, Yoon-Sang
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.117-123
    • /
    • 2011
  • In this study, evaluation tests for cleaning performance of various cleaning agents and selection of optimal ultrasonic cleaning parameters were executed to develop an efficient cleaning process in remanufacturing of laser copy machine. Cleaning performance tests were executed with 8 cleaning agents (A~H) to remove the contaminants of oil-ink, toner particles, and shoe polish. Physical properties and foamability tests were also applied. For 3 types of contaminants, cleaning agent G showed superior cleaning performance compared to agent A which has being used at a remanufacturing of laser copy machine in Korea. With cleaning agents selected in pre-tests, ultrasonic cleaning tests were executed to remove real contaminants on the parts of used digital laser copy machine parts. Cleaning agent G at 28 kHz ultrasonic frequency showed faster cleaning performance compared to agent A and other frequencies. The productivity and economic efficiency in remanufacturing of laser copy machine are expected to increase by adapting agent G and 28 kHz frequency at ultrasonic cleaning process.

The Development of the Design Guideline and the Comparative Evaluation For the Remanufacturing of a Cellular Phone (휴대폰 재제조를 위한 친환경 설계 지침 개발 및 비교 평가)

  • 김찬석;이화조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1029-1033
    • /
    • 2004
  • Concern over the negative environmental impacts associated with the production, use and End-of-Life(EoL) of cellular phones is particularly high due to large production volumes and characteristically short time scales of technological and stylistic obsolescence. Therefore we have to research the environment-friendly technologies and the recycling methods. This paper introduces an improvement of cellular phone remanufacturing processes and develops the Directive of DFE(Design for Environment) for the remanufacturing of a cellular phone. Then We discuss the results of the comparative evaluations.

  • PDF