최근 대용량 데이터에 대한 효율적인 데이터 분석 기법이 활발히 연구되고 있다. 대표적인 기법으로는 맵리듀스 환경에서 보로노이 다이어그램을 이용한 k 최근접점 조인(VkNN-join) 알고리즘이 존재한다. VkNN-join 알고리즘은 부분집합 Ri에 연관된 부분집합 Sj만을 후보탐색 영역으로 선정하여 질의를 처리하기 때문에 질의처리 시간을 감소시킨다. 그러나 VkNN-join은 색인 구축 비용이 높으며, kNN 연산 오버헤드가 큰 문제점이 존재한다. 이를 해결하기 위해, 본 논문에서는 대용량 데이터 분석을 위한 맵리듀스 기반 kNN join 질의처리 알고리즘을 제안한다. 제안하는 알고리즘은 시드 기반의 동적 분할을 통해 색인구조 구축비용을 감소시킨다. 또한 시드 간 평균 거리를 기반으로 후보 영역을 선정함으로써, 연산 오버헤드를 감소시킨다. 아울러, 성능 평가를 통해 제안하는 기법이 질의처리 시간 측면에서 기존 기법에 비해 우수함을 나타낸다.
유한체의 이사로그 문제는pne-way 함수의 특성을 잘 나타내고 있어, 암호 시스템 에 많이 응용되고 있다. 본 논문에서는 기존의 이산로그와 관련된 알고리즘들을 분석 약술 하고 그중 가장 효율적인 알고리즘으로 평가되는 Coppersmity알고리즘을 4GF({2^127})$ 에서 구현한 결과를 일부분 공개한다.
A-SMGCS를 구성하는 핵심 알고리즘 중 감시(Surveillance)알고리즘은 레이더로부터 수신한 항공기 좌표정보를 토대로 정확한 항공기의 위치정보를 확정하는 역할을 수행하는데, 감시알고리즘의 좌표 보정 성능을 평가하기 위한 방법으로 단순회귀 직선을 제시하고 이의 타당성을 검토한다.
Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2003.04a
/
pp.62-62
/
2003
Landsat TM 영상을 이용, 명암차가 높은 산악 지역에 적용해왔던 알고리즘을 개선하여 비교적 명암차가 낮고 넓게 분포하는 충적층 지역의 선구조를 추출하는 알고리즘을 개발하였다. 수치지형모델(OEM)에 대하여 Local Enhancement 를 이용해서 평탄한 지역을 선정하여 이로부터 충적층을 추출하였다. Zevenbergen & Thorno's Method를 3×3 moving windowing을 통해서 최대 경사방향과 경사를 구해서 충적층을 지나는 선구조 요소를 추출하고 다시 Hough 변환을 이용해서 1차 선구조를 추출하였다 이를 이용하여 충적층의 직각방향의 지형단면의 경사를 유추해서 spline 보간법을 이용해 단면의 최저점을 구하고 이 구해진 점들을 다시 Hough 변환을 이용해서 최종 선구조를 추출하였다. 본 연구에서 사용한 알고리즘은 기존 알고리즘에서 사용된 소창문보다 훨씬 큰 충적층이 분포하는 지역의 지형 경사가 수렴하는 부분에 선구조가 뚜렷이 나타남을 볼 수 있다. 최대경사방향과 경사를 구해서 얻어진 1 차선구조와 최종 선구조에서 선구조 방향이 다소 차이를 보인다. 1 차 선구조의 수직방향 지형단면의 자료를 이용함에 있어, 지형 단면의 시작정과 끝지점을 임의적으로 결정하는 것이 아니라, 충적층을 가로질러 최고점까지 또는 다음 충적층이 나을 때까지의 자료를 이용해서 보간법을 사용하였고, 충적층의 넓이에 따라 보간할 자료량의 차이에 의한 오차가 발생할 수 있다. 넓은 충적층에서 선구조가 잘 추출되는 반면에 좁은 충적층이 분포하거나 계곡에 해당하는 지역에l서는 경사수렴부와 일치하지 않는 선구조가 추출되었다. 이는 향후 계속적으로 연구해서 보완되어야 할 것으로 사료된다.페클 잡영 제거 정도에 있어 다른 필터들과 큰 차이가 없지만 경계선보존지수는 다른 필터들에 비하여 가장 우수함을 확인할 수 있었다.rbon 탐식효율을 조사한 결과 B, D 및 E 분획에서 유의적인 효과를 나타내었다. 이상의 결과를 종합해볼 때, ${\beta}$-glucan은 고용량일 때 직접적으로 또는 $IFN-{\gamma}$ 존재시에는 저용량에서도 복강 큰 포식세로를 활성화시킬 뿐 아니라, 탐식효율도 높임으로써 면역기능을 증진 시키는 것으로 나타났고, 그 효과는 crude ${\beta}$-glucan의 추출조건에 따라 달라지는 것을 알 수 있었다.eveloped. Design concepts and control methods of a new crane will be introduced in this paper.and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of the process. On the basi
Display under strong ambient lighting is perceived darker than it really is. Existing techniques for solving the problem in terms of software show limitations in that image enhancement techniques are applied regardless of ambient lighting or chrominance is not improved compared to luminance. Therefore, this paper proposes a visibility enhancement algorithm using deep learning to adaptively respond to ambient lighting values and an equation to restore optimal chrominance for luminance. The algorithm receives an ambient lighting value with the input image, and then applies a deep learning model and chrominance restoration equation to generate an image to minimize the difference between the degradation modeling of enhanced image and the input image. Qualitative evaluation proves that the algorithm shows excellent performance in improving visibility under strong ambient lighting through comparison of images applied with degradation modeling.
Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2008.06a
/
pp.67-74
/
2008
현재의 센서 네트워크 시스템은 공간적 정보를 배제한 센서 데이터스트림에 대한 저장 및 검색 방안에 대한 연구에 치중되어 있다. 하지만, 이러한 센서 네트워크가 공간적 정보와 결합하게 되면 훨씬 더 많은 응용과 의미 있는 데이터로 가공될 수 있다. 본 논문은 GeoSensor Network에서 공간적 정보와 데이터스트림이 결합된 공간 데이터스트림 정의 및 공간 데이터스트림간 조인 전략들과 그에 따른 조인 전략들 간의 비용을 추정하는 비용 모델을 제시하였다. 공간 데이터스트림간 조인 전략을 위해 Nested Loop 조인, Grid File, R-tree 알고리즘을 사용하였고, 단방향 Nested Loop 조인, 단방향 Grid 조인, 단방향 R-tree 조인 기법들을 조합하여 조인 전략들 간의 비용을 추정하였다.
Park, Sang-Keun;Park, Soon-Young;Kim, Myung-Keun;Bae, Hae-Young
Annual Conference of KIPS
/
2003.11c
/
pp.1493-1496
/
2003
데이터베이스 관계 연산자 중 프로젝션(projection)과 집단 연산(aggregate function)시 사용되는 GROUP BY절, 그리고 동등 조인(equi join)에 대한 질의 처리는 중복된 튜플 중복된 GROUP BY 필드, 조인 중 발생하는 임시결과에 대한 제거나 집단 연산, 임시 결과의 저장을 위해 정렬이나 해싱 기반 알고리즘을 적용하고 있다. 이 중 해싱 기반 알고리즘은 데이터에 대한 직접적인 접근 방법과 정렬비용이 없다는 장점으로 인해 자주 사용하게 된다. 그러나 이러한 해싱(extendible hashing)[1] 기반 알고리즘은 키 값이 저장되는 버켓(bucket) 페이지의 넘침(overflow)으로 인해 분할(split)이 발생하는 경우, 분할을 야기시킨 버켓 페이지에 대한 정보를 제외한 동일한 내용의 기존 디렉토리 구조를 배로 확장해야 하는 공간 확장과, 확장된 디렉토리 구조의 유지를 위해 많은 비용을 소모하게 된다. 본 논문에서는 다량의 데이터에 대한 접근 기법과 디렉토리 구조의 저장공간, 유지 비용 절감 및 중복 해시 값을 지니는 데이터를 처리하기위한 해시 색인인 가상 디렉토리 확장 해시 색인을 제안한다. 가상 디렉토리 확장 해시 색인은 디렉토리 구조를 다단계 구조로 유지함으로써, 넓은 저장 공간을 필요로 하는 다량의 데이터에 대한 접근경로 문제를 해결하였고, 가상 디렉토리 레벨이라는 새로운 구조를 통해, 기존 디렉토리 구조의 공간 낭비 및 유지 비용을 최소화 시켰으며, 버켓 페이지를 리스트(list) 구조로 유지함으로써 중복 해시 값에 의한 디렉토리 구조의 연쇄적 분할 문제를 해결하였다.
KIPS Transactions on Software and Data Engineering
/
v.4
no.11
/
pp.499-508
/
2015
High utility itemset(HUI) mining refers to the discovery of itemsets with high utilities which are not less than a user-specified minimum utility threshold, by considering both the quantities and weight factors of items in a transaction database. Recently the utility-list based HUI mining algorithms have been proposed to avoid numerous candidate itemsets and the algorithms need the costly join operations. In this paper, we propose a new HUI mining algorithm, using the utility-list with additional attributes of transaction utility and common utility of itemsets. The new algorithm decreases the number of join operations and efficiently prunes the search space. Experimental results on both synthetic and real datasets show that the proposed algorithm outperforms other recent algorithms in runtime, especially when datasets are dense or contain many long transactions.
해시 조인 알고리즘 성능 개선에 관한 연구는 이미 많은 연구자에 의해 수행된 바 있다. 새로운 알고리즘을 추가하는 연구에서부터 컴퓨팅 환경에 맞는 최적화 솔루션을 제시하는 연구에 이르기까지 해시 조인의 성능을 향상시키는 연구는 다양하게 찾아 볼 수 있었다. 이 논문에서는 2004년 ICDA에서 발표한 [1]의 연구를 최신의 컴퓨팅 환경에서도 똑같이 작동하는지 확인해 보고자 한다.
Oh, Gi Hwan;Kim, Jae Myung;Kang, Woon Hak;Lee, Sang Won
Annual Conference of KIPS
/
2012.04a
/
pp.1131-1133
/
2012
메모리 가격이 저렴해 짐에 따라 대용량의 데이터베이스 연산이 메모리 안에서 처리될 수 있다. 그에 반해 메모리의 접근속도는 과거에 비해 크게 향상되지 않았기 때문에, 효율적인 캐시 활용이 전체 성능을 결정하는 중요한 요소가 된다. 멀티코어 환경에서 효율적 캐시와 높은 동시성을 모두 만족시키기는 쉽지 않다. 이 논문에서는 알려진 메모리 기반 해시 알고리즘을 비교하고, 각각에 대해 탐색 단계에서 조인 키를 기준으로 정렬 알고리즘을 적용하여 수행 시간과 캐시 미스 감소를 비교한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.