• Title/Summary/Keyword: 조인트 반력

Search Result 7, Processing Time 0.017 seconds

Analysis of Actuating and Joint Reaction Forces for Various Drivings in Multibody Systems with Closed-Loops (페루프를 포함하는 다물체계에 있어서 구동방법에 따른 구동력 및 조인트 반력 해석)

  • Lee, Byeong-Hun;Choe, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1470-1478
    • /
    • 2000
  • Analysis of actuating forces and joint reaction forces are essential to determine the capacity of actuators, to control the system and to design the components. This paper presents an algorithm tha t calculates actuating forces(or torques) depending on the various driving types to produce a given system motion. The joint reaction forces(or torques) of multibody systems with closed-loops are analyzed in the Cartesian coordinate space using the inverse velocity transformation technique. Two numerical examples were carried out to verify the algorithm proposed.

A study on the analysis and design for VTR deck mechanisms using CAE (CAE를 이용한 VTR Deck기구의 해석 및 설계)

  • 박태원;범진환;한형석;김명규;김광배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.223-235
    • /
    • 1993
  • VTR(Video Tape Recorder) has very complicated mechanisms composed of various cams, links, gears and so on. To satisfy kinematic requirements of VTR components, various geometric constraints between rigid bodies and a translational cam design program are developed. Mechanisms of VTR are divided into functional groups like a control part, a loading part and a tape guide part. Each group is modeled for kinematic and dynamic analysis. Finally, all groups are combined together for a complete VTR model and loads required for each function of VTR controls are studied. Detailed description of developed programs are presented and result are discussed.

A study on the factors influencing the segment lining design solved by beam-spring model in the shield tunnel (쉴드 터널 세그먼트 라이닝 설계에서 빔-스프링 구조 모델이 단면력에 미치는 영향)

  • Kim, Hong-moon;Kim, Hyun-su;Shim, Kyung-mi;Ahn, Sung-youll
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.179-194
    • /
    • 2017
  • The segment lining design for shield tunnel is generally carried out by using the beam-spring model and the induced member forces from the model are strongly influenced by the components of the model such as imposed load, coefficient of subgrade reaction, location of segment joint and its stiffness. The structural models and stiffness of its connection part found used in abroad design cases is usually obtained as it is for the domestic design of segment of shield tunnel. Those models and stiffness in existing design cases are conventionally applied to a new tunnel design without any suitability review for the project. In this study, the application method of base components of the model such as the coefficient of subgrade reaction and modelling method to the segment lining design was suggested by carrying out the comparative study of the base elements for the member forces estimation of segment lining of shield tunnel.

Comparison of Behaviors of Jointless Bridge according to Depth of Abutment Among Numerical Models (수치해석 모델에 따른 무조인트 교량의 교대 깊이별 거동 비교)

  • Kim, Seung-Won;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.167-174
    • /
    • 2022
  • This study investigates the behavior of a jointless bridge that integrates superstructure and abutment without an expansion joint. Based on the sensitivity analyses conducted in previous studies, a shell-based model was determined to be the most suitable numerical analysis model for jointless bridges due to the similarity of the model's results compared with the obtained displacement shape, which was influenced by relative errors, precision, and practical aspects. Accordingly, the behavior of a jointless bridge was analyzed at various wall depths using shell element-based and solid element models. In addition, the results of MIDAS Civil and ABAQUS analysis programs were compared. In the case of semi-integrated bridges (A and B), the displacement decreased as the wall depth increased due to the ground reaction force in Case 1 under a linear spring condition and +30℃. In the case where temperature was -30℃, the change in displacement was small because the ground reaction did not occur. As for bridge C (a fully integrated alternating bridge) and bridge D (an integrated chest wall alternating bridge), the displacement decreased as the wall depth increased at both +30 and -30℃ due to pile resistance. As for the comparison between the analysis programs used, the relative error in Case 1 was small, whereas a significant difference in Case 2 was observed. The foregoing variation is possibly due to the difference in the application of the nonlinear spring in the programs.

A Fracture Study on the Bonded DCB Specimen of the Mode III Type with Aluminum Foam (알루미늄 폼으로 된 Mode III 형의 접합된 DCB 시험편에 대한 파괴 연구)

  • Lee, Jung-Ho;Cho, Jae-Ung;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.191-196
    • /
    • 2015
  • In this study, the static analysis and experiment were carried out on DCB specimens manufactured with aluminum foam in order to investigate the fracture toughness at the adhesive joint of the structure bonded with adhesive. In case of static analysis, all specimen models were shown to have the maximum reaction force when the forced displacement proceeded as much as 5 mm. The maximum reaction forces became 0.25 kN, 0.28 kN and 0.5 kN respectively in cases of specimen thicknesses of 35 mm, 45 mm and 55 mm. Two specimens in case of static experiment were selected to verify these analysis results. The maximum reaction forces were shown when the forced displacement proceeded as much as 5 to 6 mm. The maximum reaction forces became 0.22 kN and 0.3 kN respectively in cases of specimen thicknesses of 35 mm and 45 mm. By comparing the derived results, it could be shown that there was not much difference between the data of analyses and experiments. Therefore, It is inferred that the study data can be secured with only analysis by no extra experimental procedure. It is thought that the mechanical properties at the structure bonded of DCB with the type of mode III can be analyzed systematically.

A Study on the Reliability Improvement of Part Analysis in a Spring Operating Mechanism for 145kv GIS (145kv GIS용 스프링 조작기 부품 해석의 신뢰성 향상에 관한 연구)

  • Kim, Seung-O;Seok, Ho-Il;Han, Dong-Young;Lim, Dong-Soo;Choi, Won-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.6-8
    • /
    • 2005
  • 스프링 조작기는 초고압 GIS, GCB 등의 개폐장치를 구동시키는 조작 장치로서 동작 중 부품에 큰 충격력 및 힘이 작용하여 파손되는 경우가 발생한다. 이에 개발 설계 단계에서 스프링 조작기의 구조적 건전성 확보를 위해 각 부품에 작용하는 힘을 예측하여 평가, 검증하는 해석 및 시험 기술이 요구된다. 본 논문에서는 145kV GIS용 스프링 조작기를 ADAMS로 다물체 동역학 해석을 수행하여 추출한 부품의 조인트 반력을 이용하여 응력 해석을 수행하였다. 그리고 그 결과와 응력측정 시험 데이터와의 비교를 통해 해석의 신뢰성을 검증할 수 있었다. 여기서는 한 예로 커넥팅 로드에 대한 신뢰성 평가를 시행하였다.

  • PDF

Effect of Aspect Ratio and Diagonal Reinforcement on Shear Performance of Concrete Coupling Beams Reinforced with High-Strength Steel Bars (세장비 및 대각철근 유무에 따른 고강도 철근보강 콘크리트 연결보의 전단성능)

  • Kim, Sun-Woo;Jang, Seok-Joon;Yun, Hyun-Do;Seo, Soo-Yeon;Chun, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.43-51
    • /
    • 2017
  • As per current seismic design codes, diagonally reinforced coupling beams are restricted to coupling beams having aspect ratio below 4. However, a grouped diagonally reinforcement detail makes distribution of steel bars in the beam much harder, furthermore it may result in poor construction quality. This paper describes the experimental results of concrete coupling beam reinforced with high-strength steel bars (SD500 & SD600 grades). In order to improve workability for fabricating coupling beams, a headed large diameter steel bar was used in this study. Two full-scale coupling beams were fabricated and tested with variables of reinforcement details and aspect ratio. To reflect real behavior characteristic of the beam coupling shear walls, a rigid steel frame system with linked joints was set on the reaction floor. As a test result, it was noted that cracking and yielding of reinforcement were initially progressed at the coupling beam-to-shear wall joint, and were progressed to the mid-span of the coupling beam, based on the steel strain and failure modes. It was found that the coupling beams have sufficient deformation capacity for drift ratio of shear wall corresponding to the design displacement in FEMA 450-1. In this study, the headed horizontal steel bar was also efficient for coupling beams to exhibit shear performance required by seismic design codes. For detailed design for coupling beam reinforced with high-strength steel, however, research about the effect of variable aspect ratios on the structural behavior of coupling beam is suggested.