• Title/Summary/Keyword: 조석모의

Search Result 112, Processing Time 0.024 seconds

Chemical Mass Balance of Materials in the Keum River Estuary: 1. Seasonal Distribution of Nutrients (금강하구의 물질수지: 1. 영양염의 계절적 분포)

  • Yang, Jae-Sam;Jeong, Ju-Young;Heo, Jin-Young;Lee, Sang-Ho;Choi, Jin-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.71-79
    • /
    • 1999
  • As part of an on-going project investigating flux of materials in the Keum River Estuary, we have monitored seasonal variations of nutrients, suspended particulate matter (SPM), chlorophyll, and salinity since 1997. Meteorological data and freshwater discharge from the Keum River Dike were also used, Our goal was to answers for (1) what is the main factor for the seasonal fluctuation of nutrients in the Keum River Estuary? and (2) are there any differences in nutrient distributions before and after the Keum River Dike construction? Nitrate concentrations in the Keum River water were kept constant through the year. Whereas other nutrients varied with evident seasonality: high phosphate and ammonium concentrations during the dry season and enhanced silicate contents during the rainy season. SPM was found similar trend with silicate. During the rainy season, the freshwater discharged from the Keum River Dike seemed to dilute the phosphate and ammonium, but to elevate SPM concentration in the Keum Estuary. In addition, the corresponding variations of SPM contents in the estuarine water affected the seasonal fluctuations of nutrients in the Estuary. The most important source of the nutrients in the estuarine water is the fluvial water. Therefore, the distribution patterns of nutrients in the Estuary are conservative against salinity. Nitrate, nitrite and silicate are conservative through the year. The distribution of phosphate and ammonium on the other hand, display two distinct seasonal patterns: conservative behavior during the dry season and some additive processes during the rainy days. Mass destruction of freshwater phytoplankton in the riverine water is believed to be a major additive source of phosphate in the upper Estuary. Desorption processes of phosphate and ammonium from SPM and organic matter probably contribute extra source of addition. Benthic flux of phosphate and ammonium from the sediment into overlying estuarine water can not be excluded as another source. After the Keum River Dike construction, the concentrations of SPM decreased markedly and their role in controlling of nutrient concentrations in the Estuary has probably diminished. We found low salinity (5~15 psu) within 1 km away from the Dike during the dry season. Therefore we conclude that the only limited area of inner estuary function as a real estuary and the rest part rather be like a bay during the dry season. However, during the rainy season, the entire estuary as the mixing place of freshwater and seawater. Compared to the environmental conditions of the Estuary before the Dike construction, tidal current velocity and turbidity are decreased, but nutrient concentrations and chance of massive algal bloom such as red tide outbreak markedly increased.

  • PDF

Numerical Study on Spring-Neap Variability of Net Volume Transport at Yeomha Channel in the Han River Estuary (한강하구 수로별 순 수송량과 대.소조기 변화에 따른 염하수로의 순 수송량 변동에 관한 수치해석적 연구)

  • Yoon, Byung-Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.257-268
    • /
    • 2012
  • The EFDC model with find grid resolution system connecting the Gyeong-Gi bay and Han River estuary was constructed to study on spring-neap variability of net volume transport at each channel of the Han River estuary. The simulation time of numerical model is 124 days from May to August, 2009 with freshwater discharge at Han, Imjin and Yeseong River. The calibration and verification of model results was confirmed using harmonic components of water level and tidal current. The net volume transport was calculated during 30 days with normal freshwater conditions at Seokmo channel and Yeomha channel around Ganghwado. The ebbing net volume transport of 44% and 56% is drained into Gyeong-Gi bay through Yeomha and Seokmo channel, respectively. The ebbing net volume transport nearby Seodo at Yeomha channel convergence flooding net volume transport at Incheon harbor, and drain (westward direction) through channel of tidal flat between Ganghwado and Yeongjongdo to the Gyeong-Gi bay. The averaged net volume transport during 4 tidal cycles was compared to variation of spring-neap periods of the Yeomha channel. The convergence position is moved up- and down-ward according to spring-neap variability. The movement of the convergence zone is appeared because 1) increasing of discharged rate tidal flat channel between Ganghwado and Yeongjongdo at the spring period, 2) The growth of barotropic forcing with downward direction at the spring tide, and 3) The strength of the baroclinic pressure gradient is greater than spring with mixing processes.

A Waste Load Allocation Study for Water Quality Management of the Incheon Coastal Environment (인천해안의 수질관리를 위한 오염부하량 할당에 관한 연구)

  • Kim, So-Yeon;Choi, Jung-Hyun;Na, Eun-Hye;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.43-51
    • /
    • 2005
  • This paper presents a waste load allocation study for the Incheon coastal environment, where a computer model, called AQUASEA, was applied. A finite element mesh was constructed and refined to cover the complicated geometry of Incheon coastal sea. The tidal height at 13 places of Incheon coastal boundary and flow of the Han River were given as an input condition to the tidal simulation. All pollution sources that discharge into Incheon coast were given as input data to the water quality simulation. The modeled parameters include tidal flow and COD(Chemical Oxygen Demand). The model was calibrated and verified with the field measurements. The model results showed reasonable agreements with field measurements in both tidal flow and water quality. Systems analysis showed that the pollution load from the Han River caused recognizable impacts on the water quality of Incheon coast from Yeomhwa waterway to northern area of Younghungdo. The loads from Incheon City affected water quality from the area below Youngjongdo to the area above Jawalldo. The discharge from the Sihwa Lake caused discernible impacts on the coastal zone from the dike outlet to the Incheon harbor, and pollution loads from Kyungkido affected the sea near the Oido. An effective water quality management plan was developed from the waste load allocation analysis of the validated model, that the maximum waste loads can be discharged without violating the water quality standard given in the Incheon coastal environment.

Numerical Modeling of Sediment Transport during the 2011 Summer Flood in the Youngsan River Estuary, Korea (영산강 하구의 2011년 하계 홍수시 퇴적물이동 수치모의)

  • Bang, Ki-Young;Kim, Tae In;Song, Yong Sik;Lee, Jung Hyun;Kim, Shin Woong;Cho, Jae-Gab;Kim, Jong Wook;Woo, Seung Buhm;Oh, Jae Kyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.2
    • /
    • pp.76-93
    • /
    • 2013
  • The hydrodynamics in the Youngsan River Estuary has changed due to coastal developments such as the estuary dam and two tidal barriers. As the freshwater discharge is artificially controlled, the circulation pattern is different from those of natural estuaries and the river-born sediment supply is restricted. 3D numerical modeling system EFDC was applied to investigate the sediment transport pattern and budget in summer with river floods. The real-time driving forces and the fluvial sediment discharges from the watershed modeling were assigned for the simulation period. The size classes of sand, silt and clay were adopted based on the grain-size distribution of bottom sediments. The modeling results were calibrated and validated with the observed tides, tidal currents and suspended sediment concentrations. The suspended sediments are transported to the offshore at surface layer, whereas upstream toward the dam at mid- and bottom layers in August 2011. The characteristic estuarine circulation induced by the freshwater discharge from the dam, causes the deposition of silt-sized sediments on the whole and the sustained suspension of clay-sized sediments.

Clinical Efficacy of 7-French Catheter for Initial Treatment of Primary Spontaneous Pneumothorax (원발성 자연기흉에 대한 초 치료로서 7-French 흉관의 적용)

  • Ryu Kyoung-Min;Jung Eui-Seok;Cho Suk-Ki;Sung Sook-Whan;Jheon Sang-Hoon
    • Journal of Chest Surgery
    • /
    • v.39 no.5 s.262
    • /
    • pp.394-398
    • /
    • 2006
  • Background: Goal of the initial treatment of primary spontaneous pneumothorax is re-expansion of the lung by evacuation of air from pleural space. Authors thought small caliber catheter could reach to this goal instead of conventional large bore chest tube. This retrospective study was undertaken to assess the effectiveness of 7-French (Fr) catheter for the initial treatment of primary spontaneous pneumothorax. Material and Method: Between May 2003 and April 2005, 111 patients with primary spontaneous pneumothorax were managed with tube drainage; 7 Fr catheter for 86 patients and 24-French chest tube for 25 patients. We analyzed catheter indwelling time, use of analgesics, re-expansion of the lung, and catheter related problems by medical records. Result: Mean catheter indwelling time was $2.4{\pm}1.1$ days in 7 Fr group and $2.3{\pm}1.3$ days in chest tube group (p>0.05). All patients with 24 Fr catheter needed analgesics injection but never in 7Fr group. Complete re-expansion of the lung based on plane chest radiograph was obtained in 77% of 7 Fr group. The problem related with 7 Fr catheter was kinking, which showed in 5.6%. Conclusion: Application of the 7 Fr catheter for initial management of primary spontaneous pneumothorax was as effective as 24 Fr catheter.

Model Development on the Fate and Transport of Chemical Species in Marsh Wetland Sediments Considering the Effects of Plants and Tides (식생과 조석의 영향을 고려한 연안습지 퇴적물 내 물질거동 모형의 개발)

  • Park, Do-Hyun;Wang, Soo-Kyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.53-64
    • /
    • 2009
  • Wetlands can remove organic contaminants, metals and radionuclides from wastewater through various biogeochemical mechanisms. In this study, a mathematical model was developed for simulating the fate and transport of chemical species in marsh wetland sediments. The proposed model is a one-dimensional vertical saturated model which is incorporated advection, hydrodynamic dispersion, biodegradation, oxidative/reductive chemical reactions and the effects from external environments such as the growth of plants and the fluctuation of water level due to periodic tides. The tidal effects causes periodic changes of porewater flow in the sediments and the evapotranspiration and oxygen supply by plant roots affect the porewater flow and redox condition on in the rhizosphere along with seasonal variation. A series of numerical experiments under hypothetical conditions were performed for simulating the temporal and spatial distribution of chemical species of interests using the proposed model. The fate and transport of a trace metal pollutant, chromium, in marsh sediments were also simulated. Results of numerical simulations show that plant roots and tides significantly affect the chemical profiles of different electron acceptors, their reduced species and trace metals in marsh sediments.

Development of Integrated Process Management System for Pump Dredge (펌프식 준설선의 통합공정관리시스템 개발)

  • Jeong, Dae-Deuk;Lee, Joong-Woo;Cho, Jeung-Eon
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.146-151
    • /
    • 2002
  • Efficiency of dredging work depends on the types of equipment used, the sediments encountered, whether the work to be performed is new or for maintenance, pre and/or post hydrographic surveying and so forth. Among those, surveying accuracy which is directly determined by the control of the dredge's position and depth surveying accuracy being surveyed at the dredging point are important factors. The purpose of this study is to develop an integrated process management system for pump dredge. The system is composed of 4 sub-systems such as LADGPS for dredge positioning dredging point determination, tidal gauge and angular depth sensor for depth determination, and GIS and ENC process management. The process management system for pump dredge developed was installed on the pump dredge "EUNJIN PD-2" but is now producing work data for comparison with performance of the existing dredge. The data retrieved from the pump dredge process management system up to now shows similar result from the grab dredge management system which was developed previously. It is easy to operate, achieves good accuracy with only 45cm unevenness, reduces working perioa by 20 percint,. More precise evaluation of the system comes later after the dredging work is completed.completed.

A New Optical Access Network Structure for the convergence of Broadcast and Communication (방송통신 통합을 위한 새로운 광가입자망 구조에 관한 연구)

  • Hur Jung;Koo Bon-Jeong;Hyun Jae-Myoung;Park Youngil
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.17-20
    • /
    • 2004
  • 가정 내에 방송과 총신을 통합하여 제공하기 위한 방법으로서 수동광가입자망(Passive Optical Network)이 제안되고 있다 이를 구현하기 위해 여러 방식들이 연구되고 있는데 크게는 방송과 통신에 각기 다른 파장을 이용하는 방식과, 이들을 시간 다중화 하여 한 개의 과장으로 송신하는 방식으로 나눌 수 있다. 또한 동신에 이용하는 과장의 경우 각 가입자에게 다른 파장을 적용하는 WPON 방식과 모든 가입자에게 한 개의 파장만을 이용하되 시간영역에서 다중화하고 이터넷 프로토콜을 적용하는 EPON 방식으로 구분할 수 있다. WPON의 경우 EPON에 비해 수월하게 광대역 서비스를 할 수 있는 장점이 있으나, 각 가입자 과장의 제어 및 관리가 복잡하며, 고비용을 요구한다. 반면 EPON의 경우 채널의 효율성은 극대화할 수 있으나, 동시 이용자가 많을 경우 전송 속도가 하락한다. 한편, 방송과 통신을 통합한 채널의 특성을 살펴보면 가입자 방향으로의 하향 신호의 양이 중양국 방향으로의 상향 신호의 양에 비해 훨씬 많은 비대칭 구조이다. 따라서 본 연구에서는 이러한 채널 특성에 맞도록 하향 전송에는 WPON의 구조를 이용하고, 상향 전송에는 EPON의 구조를 적용하는 새로운 구조의 광가입자망을 제안하였다. 제안된 구조에 적합한 MPCP (Multi-Point Control Protocol) 프로토콜을 제시하고, 가입자 장치의 여러 종속 신호를 다중화하고 전송할 수 있는 ONU (Optical Network Unit)의 구조를 제안하였다. 또한 이러한 구조를 갖는 W-EPON 테스트베드를 구현하고 전송 시험을 통해 제시된 구조의 적합성을 측정한 결과를 보인다.4 Textual format) 파일을 생성한다. 또한, 콘텐츠 전송 및 저장의 효율성을 위해 이진 포멧인 IPMP화된 MP4 파일을 생성할 수 있다.으로써, 에러 이미지가 가지고 있는 엔트로피에 좀 근접하게 코딩을 할 수 있게 되었다. 이 방법은 실제로 Arithmetic Coder를 이용하는 다른 압축 방법에 그리고 적용할 수 있다. 실험 결과 압축효율은 JPEG-LS보다 약 $5\%$의 압축 성능 개선이 있었으며, CALIC과는 대등한 압축률을 보이며, 부호화/복호화 속도는 CALIC보다 우수한 것으로 나타났다.우 $23.87\%$($18.00\~30.91\%$), 갑폭 $23.99\%$($17.82\~30.48\%$), 체중 $91.51\%$($58.86\~129.14\%$)이였으며 성장율은 사육 온도구간별 차는 없었다.20 km 까지의 지점들(지점 2에서 지점 6)에서 매우 높은 값을 보이며 이는 조석작용으로 해수와 담수가 강제혼합되면서 표층퇴적물이 재부유하기 때문이라고 판단된다. 영양염류는 월별로 다소의 차이는 있으나, 대체적으로 지점 1과 2에서 가장 낮고, 상류로 갈수록 점차 증가하며 지점 7 상류역이 하류역에 비해 높은 농도이다. 월별로는 7월에 규산염, 용존무기태질소 및 암모니아의 농도가 가장 높은 반면에 용존산소포화도는 가장 낮다. 그러나 지점 14 상류역에서는 5월에 측정한 용존무기태질소, 암모니아, 인산염 및 COD 값이 7월보다 다소 높거나 비슷하다. 한편 영양염류와 COD값은 대체적으로 8월에 가장 낮으나

  • PDF

Mechanisms of Salt Transport in the Han River Estuary, Gyeonggi Bay (경기만 한강 하구에서의 염 수송 메커니즘)

  • Lee, Hye Min;Kim, Jong Wook;Choi, Jae Yoon;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.1
    • /
    • pp.13-29
    • /
    • 2021
  • A 3-D hydrodynamic model is applied in the Han River Estuary system, Gyeonggi Bay, to understand the mechanisms of salt transport. The model run is conducted for 245 days (January 20 to September 20, 2020), including dry and wet seasons. The reproducibility of the model about variation of current velocity and salinity is validated by comparing model results with observation data. The salt transport (FS) is calculated for the northern and southern part of Yeomha channel where salt exchange is active. To analyze the mechanisms of salt transport, FS is decomposed into three components, i.e. advective salt transport derived from river flow (QfS0), diffusive salt transport due to lateral and vertical shear velocity (FE), and tidal oscillatory salt transport due to phase lag between current velocity and salinity (FT). According to the monthly average salt transport, the salt in both dry and wet seasons enters through the southern channel of Ganghwa-do by FT. On the other hand, the salt exits through the eastern channel of Yeongjong-do by QfS0. The salt at Han River Estuary enters towards the upper Han River by FT in dry season, whereas that exits to the open sea by QfS0 in wet season. As a result, mechanisms of salt transport in the Han River Estuary depend on the interaction between QfS0 causing transport to open sea and FT causing transport to the upper Han River.

Field Observation of Morphological Response to Storm Waves and Sensitivity Analysis of XBeach Model at Beach and Crescentic Bar (폭풍파랑에 따른 해빈과 호형 사주 지형변화 현장 관측 및 XBeach 모델 민감도 분석)

  • Jin, Hyeok;Do, Kideok;Chang, Sungyeol;Kim, In Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.446-457
    • /
    • 2020
  • Crescentic sand bar in the coastal zone of eastern Korea is a common morphological feature and the rhythmic patterns exist constantly except for high wave energy events. However, four consecutive typhoons that directly and indirectly affected the East Sea of Korea from September to October in 2019 impacted the formation of longshore uniform sand bar and overall shoreline retreats (approx. 2 m) although repetitive erosion and accretion patterns exist near the shoreline. Widely used XBeach to predict storm erosions in the beach is utilized to investigate the morphological response to a series of storms and each storm impact (NE-E wave incidence). Several calibration processes for improved XBeach modeling are conducted by recently reported calibration methods and the optimal calibration set obtained is applied to the numerical simulation. Using observed wave, tide, and pre & post-storm bathymetries data with optimal calibration set for XBeach input, XBeach successfully reproduces erosion and accretion patterns near MSL (BSS = 0.77 (Erosion profile), 0.87 (Accretion profile)) and observed the formation of the longshore uniform sandbar. As a result of analysis of simulated total sediment transport vectors and bed level changes at each storm peak Hs, the incident wave direction contributes considerable impact to the behavior of crescentic sandbar. Moreover, not only the wave height but also storm duration affects the magnitude of the sediment transport. However, model results suggest that additional calibration processes are needed to predict the exact crest position of bar and bed level changes across the inner surfzone.