• 제목/요약/키워드: 조명변화 무관

검색결과 23건 처리시간 0.025초

합성 대표영상에 기반 한 조명 변화무관 얼굴 인식 (Illumination Invariant Face Recognition based on the Synthesized Exemplars)

  • 문송향;이상웅;이성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.685-687
    • /
    • 2004
  • 최근 생체 인식에 대한 관심이 고조됨에 따라. 다양한 환경 변화에 강인한 얼굴 인식 방법들이 연구되고 있다. 특히, 조명 변화를 처리하기 위한 연구들이 세계적으로 발표되고 있다. 그러나 기존 방법들은 다수의 등록영상이나 조명에 대한 사전 지식이 필요하다는 제약조건을 가지고 있다. 본 논문에서는 기존 방법의 한계점을 해결하기 위해 조명 대표영상의 선형 분석을 이용한 새로운 방법론을 제안하였다. 또한 제안 방법의 효율성을 입증하기 위하여 공인된 얼굴 데이터베이스를 이용하여 다양한 실험을 시도하였으며, 이를 통해 제안된 방법 이 기존의 다른 방법에 비하여 안정적인 인식 성능을 보이는 것을 확인할 수 있었다.

  • PDF

밝기변화에 강인한 Genetic Programming 기반의 비파라미터 다중 컬러 검출 모델 (Genetic Programming based Illumination Robust and Non-parametric Multi-colors Detection Model)

  • 김영균;권오성;조영완;서기성
    • 한국지능시스템학회논문지
    • /
    • 제20권6호
    • /
    • pp.780-785
    • /
    • 2010
  • 본 논문은 물체인식이나 영상추적에 사용되는 컬러검출을 위한 GP(Genetic Programming) 기반의 컬러검출 모델을 제안한다. 기존의 컬러검출은 기본적인 RGB 모델에 대한 선형, 비선형 함수의 변환을 사용하거나, 최적화 기법이나 학습기법에 의해 조명 변화에 개선된 컬러 모델을 사용하고 있다. 하지만 대부분의 경우 색상 채널간의 간섭에 의해 다양한 색상에 대한 분류가 어렵고, 조명변화에 강인하지 못하다. 본 연구에서는 GP의 최적화된 학습기법과 모델 생성 기법을 통해 조명변화에 강인하고, 다중의 색상 검출이 가능하며, 파라미터 설정이 필요 없는 컬러 모델을 제안한다. 제안된 방법을 다양한 색상과 조명환경이 다른 영상에 대해서 기존 컬러모델과 비교 분석하였다.

지능형 자동차를 위한 조명 변화에 강인한 도로표지판 검출 및 인식 (An Illumination Invariant Traffic Sign Recognition in the Driving Environment for Intelligence Vehicles)

  • 이태우;임광용;배건태;변혜란;최영우
    • 정보과학회 논문지
    • /
    • 제42권2호
    • /
    • pp.203-212
    • /
    • 2015
  • 본 논문은 도로주행 영상에서 도로표지판을 인식하는 방법을 제안한다. 지능형 차량에서 얻어지는 도로표지판 영상은 일반적인 사물 영상과는 다른 두 가지 특징이 있다. 첫째는 대상이 되는 사물들은 종류가 제한적이고 형태가 단순한 도형인 경우가 대부분이다. 둘째는 일반적인 도로주행 영상은 다양한 조명 환경과 날씨 상태로 인해서 선명한 영상을 취득하기 어려운 점이다. 본 논문에서는 조명 변화가 심한 도로주행 영상에 대해서 효과적으로 특징을 추출하기 위해서 Modified Census Transform(MCT)을 개선한 특징추출 방법을 제안한다. 추출된 특징들은 히스토그램으로 쌓여지고 영상 전반에 걸쳐 아주 고차원의 기술자(Descriptor)로 변환되며, 변환된 수많은 기술자들은 가우시안 혼합 모델(Gaussian Mixture Model)을 활용한 Fisher-vector 방법에 의해서 저차원으로 변형하여 특징으로 사용한다. 본 논문에서 제안하는 방법은 일반적인 표지판 인식 방법에 비해서 조명변화에 강한 검출 결과를 보여주었으며, 실시간 검출 및 인식도 가능하였다.

도로주행 영상에서의 차량 번호판 검출 (Vehicle License Plate Detection in Road Images)

  • 임광용;변혜란;최영우
    • 정보과학회 논문지
    • /
    • 제43권2호
    • /
    • pp.186-195
    • /
    • 2016
  • 본 논문에서는 도로주행 영상에서의 자동차 번호판 검출방법을 제안한다. 제안하는 방법은 조명변화에 강인한 8bit-MCT 특징과 랜드마크 기반의 Adaboost 알고리즘을 이용하여 번호판 후보 영역을 생성하고, Adaboost의 검출 스코어를 이용하여 번호판의 위치를 확률로 추정하는 현저도 지도를 생성한다. 현저도 지도에서 임계값 이상의 영역을 번호판 후보 영역으로 검출하고, 각 후보 영역에 대하여 지역분산을 이용하여 영역을 보정한 후 SVM과 8bit-MCT의 히스토그램을 특징으로 사용하여 영역을 검증하고 자동차 번호판 영역을 확정한다. 본 논문에서 제안한 방법을 한국과 유럽의 다양한 도로주행 영상에 적용하여 85%의 안정적인 검출 성능을 실험을 통하여 입증하였다.

파라미터 변화에 무관한 인버터 구동 PMSM의 데드타임 보상 기법 (Dead Time Compensation Scheme Independent of Parameter Variations in an Inverter-fed PMSM Drive)

  • 김경화
    • 조명전기설비학회논문지
    • /
    • 제25권4호
    • /
    • pp.124-134
    • /
    • 2011
  • A new dead time compensation scheme that can exactly estimate the dead time and inverter nonlinearity under parameter variations is proposed for a PWM inverter-fed PMSM drive. The proposed scheme uses the fact that the sixth harmonic component in total disturbance estimated under the presence of various uncertainties is mainly caused by the dead time and inverter nonlinearity. The total disturbance due to the parameter variations as well as the dead time and inverter nonlinearity is estimated by the adaptive scheme. The sixth harmonic component is extracted from this total disturbance through harmonic analysis. The obtained sixth harmonic is processed by the PI controller to estimate the disturbance caused by the dead time and inverter nonlinearity in the stationary reference frame. The effectiveness of the proposed scheme is verified. Without requiring an additional hardware, the proposed scheme can effectively compensate the dead time and inverter nonlinearity even under the parameter variations.

초음파 센서를 이용한 물체 인식 시스템에 관한 연구 (A Study on System of Object Recognition Using Ultrasonic Sensor)

  • 조현철;이기성
    • 조명전기설비학회논문지
    • /
    • 제12권3호
    • /
    • pp.74-82
    • /
    • 1998
  • 본 연구에서는 초음파 센서에 의해 물체정보를 획득하고 불변모멘트 백터를 이용하여 이동 및 회전에 불변하는 물체특정점올 추출한다. 그리고 이를 SQFM(냉f요R없비1핑 Feature Map) 신경회로망의 입력데이터로 사용하여 물체의 이동 및 회전에 무관한 물체인식 시스템을 제안하였다. 또한 SOFM 신경회로망의 출력 neuron space 크기 및 반복학습회수와 물체인식률과의 관계를 실험하였다. 출력 neuron space와 반복학습회수를 각각 $4\times4~10\times10$까지, 10~50회까지 변화시쳐 물체인식올 실험한 결과 물체인식률은 동일한 값인 92.3[% 를 나타내었다.

  • PDF

명암도 변화값과 원형 패턴 벡터를 이용한 차량번호판 추출 및 인식 (A License Plate Extraction and Recognition Using Intensity Variation and Circular Pattern Vector)

  • 김규영;김종민;이응주
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.241-244
    • /
    • 2000
  • 본 논문에서는 차량 영상의 수평 및 수직 명암 값 변화 정보를 이용하여 번호판 영역을 추출하고 원형 패턴 벡터를 이용하여 번호판 내용을 인식하는 알고리즘에 관해 기술하였다. 제안된 알고리즘에서는 번호판 영역에서 문자와 배경이 뚜렷하게 구별되고, 일정한 명암도 변화를 가지면서 다른 영역보다 밀집도가 높다는 특성을 이용하여 수평 및 수직 명암도 변화값을 구하여 차량영상에서 번호판 영역을 추출하며 상당히 어둡거나 밝게 입력된 영상에도 동일한 인식 성능을 얻기 위하여 밝기 보정을 수행한다. 또한, 입력 문자의 크기, 이동 및 회전에 무관한 특성을 추출을 위해 원형 패턴 벡터를 이용하여 차량 번호를 인식하는 알고리즘을 제안하였다. 제안한 방법들을 적용한 결과 계산 속도가 훨씬 빠르며, 차량 번호판의 크기에 관계없이, 또한 잡음에 크게 영향을 받지 않으면서 번호판 추출이 정확하여 실시간 처리의 가능성을 제시하였을 뿐만 아니라 번호판 영역이 불투명하거나 불규칙한 조명 상태에서도 검출이 가능하였다.

  • PDF

국부적 그래디언트 방향 히스토그램을 이용한 회전에 강인한 홍채 인식 (Robust-to-rotation Iris Recognition Using Local Gradient Orientation Histogram)

  • 최창수;전병민
    • 한국통신학회논문지
    • /
    • 제34권3C호
    • /
    • pp.268-273
    • /
    • 2009
  • 홍채 인식은 홍채 패턴 정보를 이용하여 사람의 신원을 확인하는 생체 인식 기술이다. 이러한 홍채 인식 시스템에 있어 조명의 영향이나 동공의 크기, 머리의 기울어짐 등으로 인해 발생될 수 있는 홍채 패턴의 변화에 대해 무관한 특징을 추출하는 것은 중요한 과제이다. 본 논문에서는 국부적 방향 히스토그램을 이용해 조명의 변화나 홍채의 회전에 강인한 홍채인식 방법을 제안하였다. 제안된 방법은 특징 추출 및 특징 비교 시 회전에 대해 별도의 처리가 필요하지 않아 고속의 특징 추출 및 특징 비교가 가능하며 성능도 기존의 방법과 대등함을 실험을 통하여 확인하였다.

명암도 변화값과 하이브리드 패턴 벡터를 이용한 번호판 인식 (A License Plate Recognition Using Intensity Variation and Hybrid Pattern Vector)

  • 석영수;김정훈;이응주
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.153-156
    • /
    • 2001
  • 본 논문에서는 하이브리드 패턴 벡터를 이용하여 차량 번호를 실시간으로 인식하는 알고리즘을 제안하였다. 차량 입력 영상에서 전처리 과정을 거쳐 번호판의 수평 및 수직 명암값 빈도수 변화를 이용해 번호판 영역을 추출하고 하이브리드 패턴을 적용해 더 정확한 번호판 문자 및 숫자를 인식하는 알고리즘을 제안하였다. 제안한 알고리즘의 번호판 추출 과정에서는 번호판 영역의 문자와 배경이 뚜렷하게 구별되는 특성 및 번호 판 영역의 상대적인 크기의 특성과 수평 및 수직 빈도 수를 추하여 입력된 차량영상에서 번호판 영역을 추출한다. 또한 번호판 영역에서 잡음 제거와 세선화(Thinning)를 적용해 문자 및 숫자를 하이브리드 패턴 벡터를 적용하여 문자의 크기, 문자와 문자 사이의 밀집도의 특성, 이동에 무관한 특성을 이용해 차량 번호를 인식하는 알고리즘을 제안하였다. 제안한 방법들을 적용한 결과 기존의 원형 패턴 벡터 보다 훨씬 계산 속도가 빠르며, 차량 번호판의 크기에 관계없이 잡음에 영향을 받지 않고 차량 번호를 실시간으로 처리할 수 있는 가능성을 제시하였고, 번호판 영역이 불규칙한 조명 상태에서도 더 정확한 차량 번호를 인식 할 수 있는 알고리즘을 본 논문에서 제안하였다.

  • PDF

명암도 변화값과 기하학적 패턴벡터를 이용한 차량번호판 인식 (A Vehicle License Plate Recognition Using Intensity Variation and Geometric Pattern Vector)

  • 이응주;석영수
    • 정보처리학회논문지B
    • /
    • 제9B권3호
    • /
    • pp.369-374
    • /
    • 2002
  • 본 논문에서는 명암도 변화값과 기하학적 패턴벡터를 이용하여 실시간으로 차량번호판을 추출하고 인식하는 알고리즘을 제안하였다. 일반적으로 차량영상에서는 번호판 영역에서 문자와 배경이 뚜렷하게 구별되고, 일정한 명암도 변화를 가지면서 번호판 이외의 다른 영역보다 밀집도가 높은 특성이 있다. 따라서 본 논문에서는 이러한 성질을 이용하여 먼저 명암도 변화값을 사용하여 번호판을 추출하도록 하였으며 영상 입력과정에서 외부 환경에 따라 차량영상이 어둡거나 밝게 입력될 경우에도 동일한 추출 성능을 얻기 위하여 밝기 보정 과정을 수행하였다. 또한 추출된 번호판 영역으로부터 입력 문자의 크기, 이동 및 회전에 무관한 특성 추출을 위해 번호판 영역에서 잡음 제거와 세선화를 적용하여 전처리후 제안한 기하학적 패턴벡터를 이용하여 차량번호를 인식하도록 하였다. 제안한 방법들을 적용한 결과 기존의 원형 패턴벡터 보다 계산 속도가 빠르며, 차량번호판의 크기와 잡음에 무관하며, 불규칙한 조명 상태에서도 정확한 차량 번호를 인식할 수 있었다.