• Title/Summary/Keyword: 조면암질암류

Search Result 8, Processing Time 0.01 seconds

Analysis of Geological Structure of Volcanic Rock Mass in Ulleung-do using Variations of Magnetic Anomaly (자력탐사 자기이상 분석을 활용한 울릉도 화산암체 지질구조 특성 해석)

  • Kim, Ki-Beom;Kim, Man-Il
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.619-630
    • /
    • 2018
  • The purpose of this study is to investigate the existence of faults and intrusive rocks in the volcanic rock mass of Ulleung-do using magnetic anomalies. The magnetic survey data show that basaltic (mafic) rocks have high magnetic anomalies and that trachytic (felsic) rocks have low magnetic anomalies, implying that the anomaly distributions can be used to distinguish between different volcanic rock types that may be covered by regolith (such as alluvial and colluvial deposits) and other sedimentary layers. Our results show that basaltic rocks are not present within the Nari caldera. However, outside the caldera, the occurrence of high magnetic anomaly values of >$1,000{\gamma}$ is presumed to reflect the existence of basaltic craters or volcanic vents that formed prior to the eruption of the trachytic rocks. In particular, the area with anomaly values of >$1,000{\gamma}$ in the vicinity of Namyang-ri, southwest of Ulleung-do, is interpreted as having a high probability of hosting a crater and vent originating from mafic volcanism.

Paleomagnetism and Radiometric Age of Trachytes in Jeju Island, Korea (한국(韓國), 제주도(濟州島)에 산출(産出)하는 조면암류(粗面岩類)의 고지자기(古地磁氣) 및 절대연령(絶對年齡)에 관(關)한 연구(硏究))

  • Won, Jong Kwan;Matsuda, Jun-ichi;Nagao, Keisuke;Kim, Kwang Ho;Lee, Moon Won
    • Economic and Environmental Geology
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 1986
  • The geology of the Jeju island is characterized by the occurrence of thick voluminous basaltic lava flows and minor trachytic lavas. The land form can be divided topographically into the lava plateau, the shield-shaped Halla volcanic edifice and the parasitic cones whose number is more than 360, which is closely related to the cyclic volcanism of the island. Especially, the trachytic lavas seem to be the latest differentiation products of the cyclic activities and largely classified into two groups (Backlokdam group and Sanbangsan group) on the basis of the occurrence and the petrography. The paleomagnetism and the radiometric age on the two groups of trachyte suggest a lower and an upper time limits of the volcanic stratigraphy of the island. An average age of the trachyte of the Sanbangsan group is $0.733{\pm}0.056m.y.$, and is correlated to a horizon a little lower than the boundary (0.69m.y.) between the Brunches normal epoch and Matuyama reversed epoch. An average age of $0.025{\pm}0.008m.y.$ determined from the Backlokdam trachyte may be corrected to anyone horizon of the Laschamp, or the Lake Biwa, or the Lake Mono excursion. The two groups of trachytes are distributed with the latitude difference of 9'($0.15^{\circ}$), and with age difference of about 0.71 m.y. Assuming that the two trachyte groups were erupted from the same stationary hot spot, the lithosphere comprising the Jeju island is considered to have moved southward with a rate of about 2.3 cm/year.

  • PDF

Evaluation of Volcanic Processes and Possible Eruption Types in Ulleung Island (울릉도에서의 화산과정과 발생 가능한 분출유형의 평가)

  • Hwang, Sang Koo;Jeong, Seong Wook;Ryu, Han Young;Son, Young Woo;Kwon, Tae Ho
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.715-727
    • /
    • 2020
  • Volcanostratigraphy in Ulleung Island is divided into 4 stratigraphic groups: Dodong Basaltic Rocks, Ulleung Group, Seonginbong Group and NariGroup. The main pyroclastics in them includes lapilli tuff intercalated within the Dodong Basaltic Rocks, lapilli tuff at the top of Sadong Breccia, Sataegam Tuff, Gombawi Welded Tuff, Bongrae Scoria Deposits, Maljandeung Tuff, Nari Scoria Deposits and Jugam Scoria Deposits. Analysing eruption types, The lapilli tuff in the Dodong Basaltic Rocks is derived from Surtseyan eruption, and the Bongrae, Nari and Jugam Scoria Deposits are caused by Strombolian eruptions or/and sub-Plinion eruptions, but the Sataegam Tuff and Maljandeung Tuff are derived from Plinian and phreatoplinian eruptions. Among them the large-scaled eruptions. In particular, the eruptions of Maljandeung were large enough to result in caldera collapse, and had falled out tephras to the eastern Korean peninsula but even Japan Islands. The magma with high potential to be still alive is judged to be trachyandesitic and phonolitic in composition. If the trachyandesitic magma explodes, it will probably result in a strombolian eruption and have a fairly low explosivity, but if the phonolitic magma explodes, it will probably result in a plinian eruption and have a much higher explosivity. If the eruption had a high explosivity, there is a possibility that it could easily be converted into a phreatoplinian eruption due to the influx of groundwater by the easy generation of fractures. These large-scaled eruptions could fall out tephras to the eastern Korean peninsula but even Japan Islands.

Volcanism and Petrogenesis of Dodong Basaltic Rocks in the Ulleung Island, East Sea (울릉도 도동현무암질암류의 화산작용과 암석성인)

  • Hwang, Sang Koo;Kim, Jae Ho;Jang, Yundeuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.361-371
    • /
    • 2017
  • We investigated geochemical characteristics of the Dodong Basaltic Rocks in the lower part of the Ulleung Island. They have lithological range of alkali basalt to trachybasalt, belonging to Na and K subseries of alkaline series. They mostly fall within the field of alkalline within-plate basalts on tectonic discrimination diagrams, and then plot in the field of oceanic island basalt (OIB). Geochemically, extension of lithospheric mantle and asthenospheric upwelling after East Sea under an Cenozoic extensional tectonic setting might be a heat source for partial melting of the enriched lithospheric mantle, which might generate the basaltic magma. But we cannot exclude that mantle plume might also be a heat source for melting of the lithospheric mantle.

Physical Properties of Volcanic Rocks in Jeju-Ulleung Area as Aggregates (제주도 및 울릉도에서 산출되는 화산암의 골재로서의 물성 특징)

  • Byoung-Woon You;Chul-Seoung Baek;Kye-Young Joo
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.205-217
    • /
    • 2024
  • This study evaluated the physical characteristics and quality of volcanic rocks distributed in the Jeju Island-Ulleung Island area as aggregate resources. The main rocks in the Jeju Island area include conglomerate, volcanic rock, and volcanic rock. Conglomerate is composed of yellow-red or gray heterogeneous sedimentary rock, conglomerate, and encapsulated conglomerate in a state between lavas. Volcanic rocks are classified according to their chemical composition into basalt, trachybasalt, basaltic trachytic andesite, trachytic andesite, and trachyte. By stratigraphy, from bottom to top, Seogwipo Formation, trachyte andesite, trachybasalt (I), basalt (I), trachybasalt (II), basalt (II), trachybasalt (III, IV), trachyte, trachybasalt (V, VI), basalt (III), and trachybasalt (VII, VIII). The bedrock of the Ulleung Island is composed of basalt, trachyte, trachytic basalt, and trachytic andesite, and some phonolite and tuffaceous clastic volcanic sedimentary rock. Aggregate quality evaluation factors of these rocks included soundness, resistance to abrasion, absorption rate, absolute dry density and alkali aggregate reactivity. Most volcanic rock quality results in the study area were found to satisfy aggregate quality standards, and differences in physical properties and quality were observed depending on the area. Resistance to abrasion and absolute dry density have similar distribution ranges, but Ulleung Island showed better soundness and Jeju Island showed better absorption rate. Overall, Jeju Island showed better quality as aggregate. In addition, the alkaline aggregate reactivity test results showed that harmless aggregates existed in both area, but Ulleungdo volcanic rock was found to be more advantageous than Jeju Island volcanic rock. Aggregate quality testing is typically performed simply for each gravel, but even similar rocks can vary depending on their geological origin and mineral composition. Therefore, when evaluating and analyzing aggregate resources, it will be possible to use them more efficiently if the petrological-mineralological research is performed together.

Distribution of Resistivity Zones Near Nari Caldera, Ulleung-do, Korea, Inferred from Modified Dipole Arrays (변형 쌍극자배열법을 적용한 울릉도 나리 칼데라 주변 조면안산암 지역의 비저항분포 특성 분석)

  • Kim, Ki-Beom;Kim, Man-Il
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.223-236
    • /
    • 2019
  • Resistivity surveys can identify the distribution of geological units and structures (including fragmented fault zones), the extent of weathered and modified geological strata, and the characteristics of groundwater. This study aims to analyze the underground sedimentary layers and geological structures near the Nari and Albong Basins of Ulleung-do, Korea, focusing on six survey lines to identify the spatial trends in subsurface resistivity. A modified dipole array method (D method) was employed, combining resistivity results obtained by existing dipole array methods (A and C methods). The modified method provides optimal analysis of the cross-section of underground resistivity, and shows a clear boundary between a low-resistivity zone (${\leq}500{\Omega}{\cdot}m$) of sedimentary layers and weak zones, and a high-resistivity zone (${\geq}5,000{\Omega}{\cdot}m$) of volcanic rock (trachyandesite). The estimated average thickness of the sedimentary layers is 50~100 m for the Albong Basin and 100~200 m for the Nari Basin. An anomaly zone, different from the weak zone in the bedrock, is identified as a caldera fault, and the low-resistivity zone extends from the surface down to the lowest survey depths.

The Study on Geology and Volcanism in Jeju Island (II): Petrochemistry and $^{40}Ar/^{39}Ar$ Absolute Ages of the Volcanic Rocks in Gapado-Marado, Jeju Island (제주도의 지질과 화산활동에 관한 연구 (II): 가파도와 마라도 화산암류의 암석화학 및 $^{40}Ar/^{39}Ar$ 절대연대)

  • Koh, Gi-Won;Park, Jun-Beom
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.53-66
    • /
    • 2010
  • We report petrologic characteristics including $^{40}Ar-^{39}Ar$ absolute ages of the subsurface lavas recovered from borehole cores in two islets, Marado and Gapado, off the southwestern coast of Jeju in southernmost Korea and discuss on the volcanism in the region. The lavas in Gapado are apparently divided into one unit with bright colored, aphanitic texture and sheet jointed, and another unit with dark colored and massive. The outcrops often show differentially weathered pattern due to textural difference. While, the lavas in Marado have vesicular and glomerporphyric texture, even though each lava flow unit in Marado has slight unique texture with variation of vesicularity and phenocrysts. The chemical composition of rock core samples from Gapa borehole and Mara borehole shows that the lavas from Gapado and Marado are classified into basaltic trachyandesite($SiO_2$ 52.6-53.6 wt%, $Na_2O+K_2O$ 7.3-7.5 wt%) and tholeiitic andesite($SiO_2$ 51.7-52.8 wt%, $Na_2O+K_2O$ 3.6-4.1 wt%), respectively. The measured $^{40}Ar-^{39}Ar$ plateau ages range from $824{\pm}32\;Ka$(MSL -69 m) to $758{\pm}\;Ka$(MSL 19 m) for core samples of Gapa borehole and $259{\pm}168\;Ka$(MSL -26 m) for a core sample of Mara borehole, respectively. The absolute age of Gapado basaltic trachyandesite is well correlated with that of Sanbangsan trachyte(Won et al., 1986). Meanwhile, the age of a sample in Marado has $259{\pm}168\;Ka$(MSL -26 m) with poor plateau age formation and high error range. We report the data in caution but the rock composition and absolute age of Marado tholeiitic andesite are relatively correlated with those of lava units from Duksu and Sangmo-2 boreholes, indicating the volcanism during 260-150 Ka. On the basis of interpretation of occurrences of exposed and subsurface volcanic rocks of the study area, stratigraphic relationship with adjacent borehole cores and the bathymetry chart of surrounding area, it indicates that the lavas in Gapado were formed around 800 Ka during relatively early stage of volcanic activity in Jeju Island. Meanwhile, Marado may have originated around 260-150 Ka during relatively young stage of volcanism in Jeju Island. It is inferred that the volcanisms have originated in land and these islets were individual ancient volcanoes. The apparent topography has been re-shaped by tidal erosion due to transgression.

Magmatic Evolutions based on Compositional Variations with Time in the Maljandeung Tuff, Ulleung Island, Korea (울릉도 말잔등응회암에서 시간에 따른 조성변화에 근거한 마그마 진화)

  • Hwang, Sang Koo;Lee, So-Jin;Ahn, Ung San
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.111-128
    • /
    • 2019
  • Ulleung Island is the top of an intraplate alkalic volcano rising 3200 m from sea floor in the East Sea (or Sea of Japan). The emergent 984.6 m consist of eruptive products of basaltic, trachytic and phonolitic magmas, which are divided into Dodong Basaltic Rocks, and Ulleung, Seonginbong and Nari groups. The Maljandeung Tuff in the Nari Group consists of thick pyroclastic sequences which are subdivided into 4 members (N-5, U-4, 3, 2), generating from explosive eruptions during past 18.8~5.6 ka B.P. From chemical data, the Member N-5, phonolitic in composition, is considerably enriched in incompatible elements and REE patterns with significant negative Eu anomalies. The members 4, 3 and 2 are phonolitic to tephriphonolitic in composition, and their REE patterns do not have significant Eu anomalies. In variation trend diagrams, many elements show abrupt compositional gaps between members, and gradual upward-mafic variations from phonolite to tephriphonolite within each member. It suggests a downward-mafic zonation that were evolved into phonolitic zone in the lower part to tephriphonolitic zone in upper part of magma chamber. It is supposed that the chemical stratification generated from multiple mechanisms of thermal gravidiffusion, crystal fractionation, and gradual melting and sequential emplacement. The stratified magmas were explosively erupted to generate a small caldera during short period (11 ka B.P.). Especially both members (U-3, 2) were accumulated by gradually erupting from the upper phonoltic zone to the lower tephriphonoltic zone of the stratified chamber in 8.4 ka B.P. and 5.6 ka B.P. time, respectively.