• Title/Summary/Keyword: 조립 블록

Search Result 126, Processing Time 0.024 seconds

Block Assembly Planning Using Case-based Reasoning and Expert System (사례기반 추론 및 전문가시스템 통합을 통한 블록조립 계획 시스템)

  • Sheen, Dong-Mok
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.81-86
    • /
    • 2007
  • This paper presents a computer aided process planning system integrating case-based reasoning and expert system for block assembly in shipbuilding. Expert rules are extracted from the case-base where cases are represented as a set of constraint-satisfaction problems. Rules for the expert system are extracted by generalizing the constraints. In generalizing the constraints, parts are generalized as variables or as part-types. The system was developed with CLIPS, an expert system shell. As more cases are collected, more rules will be extracted and the existing rules will be updated.

Computer Aided Process Planning of Block Assembly using an Expert System (전문가 시스템을 이용한 블록조립 공정계획)

  • 신동목
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.67-71
    • /
    • 2003
  • This paper presents the use of an evert system to automate process planning of block assembly, a task that is usually completed manually. In order to determine the sequence of assembly operation, a search method guided by rules, such as merging of related operations, grouping of similar operations, and precedence rules based on know-hows and geometrical reasoning, is used. In this paper, the expert system developed is explained in detail regarding a global database, control strategies, and rule bases. For verification purposes, the evert system has been applied to simple examples. Since the rule bases are isolated from the inference engine in the developed system, it is easy to add more rules in the future.

CAD Interface for Block Assembly Planning using Open CASCADE (Open CASCADE를 이용한 블록조립 계획용 CAD 인터페이스)

  • 최상수;신동목
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.26-31
    • /
    • 2004
  • This paper presents a process planning system that will generate and verify assembly sequences of block assemblies. It consists of a CAD interface system and an assembly sequence planning system. In developing this system, we used an open architecture CAD kernel for the CAD interface system, for visualizing the CAD model and the assembly sequences, and an expert system shell for the assembly sequence planning system. This paper also proposes a framework for the integration of all the steps required to automate the procedures, from design to production. The process planning system is demonstrated by a simple example.

2D Nanodot and Nanowires Arrays of Titania and Silica with Tunable Morphologies via Self-Assembled Block Copolymers and Sol-gel Chemistry (자기조립 이중블록공중합체와 졸-겔 공정을 이용한 이산화티타늄과 이산화규소 2차원 나노점 및 나노선 배열의 모폴로지 제어)

TRS를 이용한 선사운항관리실 운영에 따른 해상교통관제 효과에 대한 연구

  • Kim, Seok-Jae;An, Byeong-Ok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.98-100
    • /
    • 2011
  • 울산항은 입출항 선박의 항행안전을 위해 1996년 9월부터 해상교통관제실(VTS)을 설치운영하고 있으나 많은 물동량으로 빈번한 선박통항과 액화가스, 케미컬 등의 위험화물운송선박의 통항 등의 여러 가지 위험요소가 상존하고 있는 개항장이다. 특히 현대 미포조선소와 인근에 산재해 있는 중소 조선소 등에서 발생되고 있는 선박 조립용 블록을 운송하는 예 부선들의 빈번한 운항은 울산항의 안전한 물류유통에 많은 어려움을 야기하고 있는 실정이다. 한편 울산항 해상교통관제실에서는 레이더사이트의 운항선박에 대한 데이터, PORT-MIS의 선박관련 데이터 및 최근 선박자동식별장치(AIS)의 데이터 등 많은 정보들에 의해 운항 선박들의 항행 안전을 도모하고 있다. 따라서 본 연구에서는 선박 조립용 블록을 주로 운송하는 울산항의 (주)보성해상개발에서 TRS를 이용한 자체 운항관리실을 운용하여 운송효율과 안전운항을 노력하고 있는 상황과 그 결과 울산항 해상교통관제에 미치는 효과에 대해 분석하여 그 효율성을 나타내었다.

  • PDF

Automation Planning System of Block assembly using an OPEN CASCADE (OPEN CASCADE를 이용한 블록조립 자동 계획 시스템)

  • Sheen, Dong-Mok;Choi, Sang-Su
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.17-21
    • /
    • 2003
  • This paper presents a CAD interface system that imports CAD model data and exports input information to a CAPP(Compute Aided Process Planning) system to generate a sequence for block assembly operations. In developing this system we use an open architecture CAD kernel, OpenCASCASE. The functions of the system developed are visualization of the product, definition of relations between parts, and generation of relation graph and input file for CAPP. The functions are demonstrated with a simple example.

  • PDF

Generation of Block Assembly Sequence by Case Based Reasoning (사례기반 추론을 이용한 블록조립계획)

  • 신동목;김태운;서윤호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.163-170
    • /
    • 2004
  • In order to automatically determine the sequences of block assembly operations in shipbuilding, a process planning system using case-based reasoning (CBR) is developed. A block-assembly planning problem is modeled as a constraint satisfaction problem where the precedence relations between operations are considered constraints. The process planning system generates an assembly sequence by adapting information such as solutions and constraints collected from similar cases retrieved from the case base. In order to find similar cases, the process planning system first matches the parts of the problem and the parts of each case based on their roles in the assembly, and then it matches the relations related to the parts-pairs. The part involved in more operations are considered more important. The process planning system is applied to simple examples fur verification and comparison.

A Study on the Stability of SPMT (SPMT의 안정성에 관한 연구)

  • Yoo, Dae-Wam;Jo, Kwan-Jun;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.250-257
    • /
    • 2012
  • Currently, large vessels and structures are manufactured into set of blocks, then assembled on-site. Large scale ships that weigh thousands of tons are built in a short period by making set of large blocks and assembled on a dock or a land. When a transporter encounters a slope during the process of transporting blocks, the heavy goods loaded on the transporter can be tilted. Further, if the vehicle moves down the slope in this state then it can cause an accident of overturn of loaded goods. The research has been taken into account to calculate the center of gravity of the transporter carrying heavy objects on a leveled surface or the three dimensions. In addition, ZMP (Zero Moment Point) is used to calculate the allowable slope degree that objects are predicted to overturn. Through the simulation, the objects' stability is tested when it is climbing the slope.