• Title/Summary/Keyword: 조립질 퇴적물

Search Result 96, Processing Time 0.026 seconds

Transport Paths of Surface Sediment on the Tidal Flat of Garolim Bay, West Coast of Korea (황해 가로림만 조간대 표층퇴적물의 이동경로)

  • Shin, Dong-Hyeok;Yi, Hi-Il;Han, Sang-Joon;Oh, Jae-Kyung;Kwon, Su-Jae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.2
    • /
    • pp.59-70
    • /
    • 1998
  • Two-dimensional trend-vector model of sediment transport is first tested in the tidal flat of Garolim Bay, mid-western coast of the Korean Peninsula. Three major parameters of surface sediment, i.e., mean grain size, sorting and skewness, are used for defining the best-fitting transport trend-vector on the sand ridge and muddy sand flat. These trend vectors are compared with the real transport directions determined from morphology, field observation and bedforms. The 15 possible cases of trend vectors are calculated from total sediments. In order to find the role of coarse sediments, trend vectors from sediments coarser than < 4.5 ${\phi}$, (sand size) are separately calculated from those of total sediments. As compared with the real directions, the best-fitting transport-vector model is the "case M" of coarse sediments which is the combined trend vectors of two cases: (1) finer, better sorted and more negatively skewed and (2) coarser, better sorted and more positively skewed. This indicates sand-size grains are formed by simpler hydrodynamic processes than total sediments. Transported sediment grains are better sorted than the source sediment grains. This indicates that consistent hydrodynamic energy can make sediment grains better sorted, regardless of complicated mechanisms of sediment transport. Consequently, both transported vector model and real transported direction show that the source of sediments are located outside of bay (offshore Yellow Sea) and in the baymouth. These source sediments are transported through the East Main Tidal Channel adjacent the baymouth. Some are transported from the subtidal zone to the upper tidal flat, but others are transported farther to the south, reaching the south tidal channel in the study area. Also, coarse sediment grains on the sand ridge are originally from the baymouth, and transported through the subtidal zone to the south tidal channel. These coarse sediments are moved to the northeast, but could not pass the small north tidal channel. It is interpreted that the great amount of coarse sediments is returned back to the outside of the bay (Yellow Sea) again through the baymouth during the ebb tide. The distribution of muddy sand in the northeastern part of study area may result from the mixing of two sediment transport mechanisms, i.e., suspension and bedload processes. The landward movement of sand ridge and the formation of the north tidal channel are formed either by the supply of coarse sediments originating from the baymouth and outside of the bay (subaqueous sand ridges including Jang-An-Tae) or by the recent relative sea-level rise.

  • PDF

Trace metals in sediments of the Keum River (금강퇴적물 중 미량금속의 분포특성)

  • 이석훈
    • The Korean Journal of Quaternary Research
    • /
    • v.10 no.1
    • /
    • pp.27-52
    • /
    • 1996
  • 금강 퇴적물의 지화학적 특성을 파악하기 위하여 상류에서 하류까지 21개의 표층 퇴적물을 채취하고 총금속(Al, Fe, Mn, Cr, Co, Ni, Cu, Zn, Pb) 입도별 금속 및 존재형태별 금속을 분석하였다. 또한 하천에서 연안역까지 미량금속의 공간적 변화를 보기 위해 부유물 을 일정 간격으로 채취하여 미량금속을 분석하였다. 퇴적물 중 미량 금속 함량을 평균 입도 와 밀접히 관계하여 변화하며 세립질실트 이하 부분에서 가장높은 함량을 보였고 이 높은 함량은 하천 부유물 중 금속 함량과 Mn을 제외하고 거의 유사한 수준이었다. Pb은 조립질 모래에서도 높은 함량을 보이는데 이는 조립질 모래에 많이 포함된 정장석에 의한 영향이 되고 세립질 실트에서의 높은 금속 함량은 세립한 중광물에 의한 영향이다. Mn과 Pb을 제 안한 금속들은 퇴적물 중 주로(70% 이상) 결정 격자와 관계하여 존재하는데 이는 퇴적물의 주구성 입도가 조립하여 금속이 풍부하고 세립한 중광 물에 의한 영향이 크기 때문이다. 하 천에서 염하구로 금속 함량이 급격히 감소하는데 이는 용존 $Mn^{+2}$이온이 $MnO_2$로 변화하는 산화반응과 하천구역에서의 퇴적 그리고 염하구에서 금속이 적어 진 입자(염하구 내에서 유기물 분해/용해로 만들어지거나 재부유 작요에 의한 조립질 물질) 와 하천 부유물과의 혼합작용에 의해 이루어진다.

  • PDF

A Study of Coarse Bed Materials in Small Streams in Rocky Mountains (로키 산맥 소하천의 조립질 하상 퇴적물에 관한 연구)

  • Kim, Jong-Wook
    • Journal of the Korean Geographical Society
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 1998
  • This study surveyed intensively the relationships between grain size of coarse bed materials and some principal factors in channel system, drainage area and channel slope, in Rocky Mountains. The result of this research shows that there are statistically significant relationships between these factors. Generally, the grain size and the channel slope exponentially decreased in the study area with the increase in drainage area. However, there are great differences in grain size and channel slope between upstream and downstream channels. The boundary lines are commonly located at near the mouth of canyon. From these results, it can be concluded that the bed material characteristics and the channel slope are strongly influenced by the geological and geomorphological background of the drainage basin in this study area.

  • PDF

Quantitative X-ray Diffraction Analysis of the Gyeonggi Bay Surface Sediments (경기만 표층퇴적물의 X선 광물정량분석)

  • Moon, Dong-Hyeok;Cho, Hyen-Goo;Kim, Soon-Oh;Yi, Hi-Il;Do, Jin-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.279-288
    • /
    • 2009
  • Mineral compositions of the Gyeonggi Bay surface sediments were determined using the high resolution X-ray diffractometer and Siroquant v. 3.0 program. Surface sediments are composed of rock forming minerals (quartz 63.8%, plagioclase 12.9%, alkali feldspar 11.7%, muscovite 4.3%, amphibole 1.2%, biotite 0.5% on average), clay minerals (illite 2.4%, chlorite 1.4%, kaolinite 0.4%) and carbonate minerals (calcite 0.1%, aragonite 0.3%). Coarse sediments are high in the northern, southern and central parts of the study area, whereas fine sediments are high in the northern and southern parts of the central area. Coarse sediments have relatively a high quartz content in the northern part, and relatively high plagioclase and muscovite contents in the southern part of the study area. In the southern part and the northern part of central area, fine sediments have relatively a high illite content, and chlorite and kaolinite contents, respectively.

Trace metals in Chun-su Bay sediments (천수만 퇴적물에서 미량금속의 지화학적 특성)

  • Song, Yun-Ho;Choi, Man-Sik;Ahn, Yun-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.169-179
    • /
    • 2011
  • To investigate the controlling factor and accumulation of trace metal concentrations in Chun-su Bay sediments, grain-size, specific surface area, organic carbon content, calcium carbonate content, and concentration of Al, Fe, Na, K, Mg, Ca, Ti, Mn, P, S, Ba, Sr, Li, Co, Cr, Ni, Cu, Zn, As, Cd, Cs, Sc, V, Sn were analyzed. Controlling factors of metals were quartz-dilution, calcium carbonate and coarse sand or K-feldspar. Although the distribution of V, Co, Cr, Ni, Cu, Zn, Sn, and Cd concentration was explained by grain-size effiect, Mn and As showed the similar importance of grain-size effect and coarse sand or K-feldspar factors. By virtue of enrichment factor and 1 M HCl experiment, there were little enrichment in all the trace metals in bay sediments, which were explained well by geochemical properties of sediments. Since the concentration levels of As in coarse sand were high as much as those in fine-grained sediments and it was combined with Mn oxide (1 M HCl leached) and K-feldspar (residual), it was suggested that when the enrichment of As in sediments would be assessed, it is necessary to separate the coarse sand from bulk sediments or to use only sediments with higher than 10% in < $16{\mu}m$ fraction.

The Characteristics and Distribution of the Surface Sediment Grain Size of Nakdong River Deltaic Barrier Islands (낙동강 삼각주연안 사주섬 표층퇴적물의 입도특성과 공간적 분포)

  • Kim, Sung-Hwan;Rhew, Ho-Sahng;Shin, Young-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.1
    • /
    • pp.43-53
    • /
    • 2007
  • Rapid geomorphic changes occur in Nakdong River deltaic coast which is composed of deltaic barrier islands and tidal flats. We investigate the pattern of these rapid geomorphic changes by analyzing the distributions of sediment grain size characteristics. The distributions of sediment grain size characteristics analysis is a very efficient method to explain geomorphic changes of deltaic barrier islands. In sediments from Jinwoo Island, Sinja Island, and Doyo Island which are composed of Nakdong River deltaic coast, mean particle size increases to onshore direction and become coarser in tidal inlets. All sediments are very well sorted. Though almost sediments show little negative skewness, several sediments from tidal inlets show negative skewness. These results provide that the stronger and more regular energies affect Nakdong River deltaic coast and make fine sediments selectively move toward tidal inlets. Because of this mechanism, the recurved spits of deltaic barrier islands enlarge.

  • PDF

Mixed Carbonate-Detrital Sediments on the Southeastern Continental Shelf of Korea (한반도 동해 남부 대륙붕에 분포하는 탄산질-쇄설성분 혼합 퇴적물에 대한 연구)

  • Choi, Jin-Yong
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.493-499
    • /
    • 1997
  • Grain size analysis have been made for the carbonate-detrital mixed sediments on the continental shelf off the southeastern coast of Korea. The detrital components are well-sorted with mean grain size between 2-3 phi. The detrital components are thought to be deposited in the beach environment during the glacial times when the sea level was low, representing typical 'relict' sediments. Most of the carbonate components consist of shell fragments, and are deeply weathered. They are also interpreted as the relict components that were deposited in the shallow marine environment. The carbonate fraction are coarser-grained and poorly sorted compared to the detrital component. The carbonate components are thought to have experienced the continuous environmental control of fragmentation and selective size sorting after the deposition.

  • PDF

Quantitative X-ray Diffraction Analysis of the Yellow Sea Surface Sediments; 2nd Yellow Sea Cruise Samples in 2001 (황해 표층 퇴적물의 X선 광물정량분석; 2001년 황해 2차 탐사 시료)

  • Moon, Dong-Hyuk;Kim, Soon-Oh;Yi, Hi-Il;Shin, Dong-Hyeok;Shin, Kyung-Hoon;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.203-212
    • /
    • 2007
  • Mineral compositions of 89 Yellow Sea surface sediments collected at the second cruise in 2001, were determined using the high resolution X-ray diffractometer and Siroquant v.3.0 program. Yellow Sea surface sediments are composed of major minerals (quartz 57.8%, plagioclase 16.0% and alkali feldspar 10.0%), clay minerals, and calcite. Illite (8.7%) is the most abundant clay mineral, chlorite (2.6%) is the second, and kaolinite (0.6%) is few. however smectite is not detected. Quartz content is very high around the margin of the Yellow Sea, however is very low along the northwest to southeast direction extending from southeast of Sandong Peninsula to southwest of Jeju Island. It has similar distribution pattern with that of coarse sediment (sand). The coarse sediment, is mainly consisted of quartz, may be much supplied from the eastern part and southwestern part of the Yellow Sea. Illite distribution pattern is opposite to that of quartz. It is similar to those of clay and mud particles, therefore it can be suggested that fine sediment may be largely supplied from the northwestern part of the Yellow Sea. It is necessary to continue this kind of investigation, because it is difficult to interpret the sediment provenance of the Yellow Sea only from the result of this study.

Seafloor Morphology and Surface Sediment Distribution of the Southwestern Part of the Ulleung Basin, East Sea (동해 울릉분지 남서부 해저지형 및 표층퇴적물 분포)

  • Koo, Bon-Young;Kim, Seong-Pil;Lee, Gwang-Soo;Chung, Gong Soo
    • Journal of the Korean earth science society
    • /
    • v.35 no.2
    • /
    • pp.131-146
    • /
    • 2014
  • Multi-beam echosounder data and grain size analysis data of surface sediment were acquired and analyzed in order to investigate the shelf-to-slope morphology, geological character, and their geological controlling factors in the southwestern margin of the Ulleung Basin. According to the morphological character, the continental shelf can be divided into two parts: (1) shallow (~100 m) and steep ($0.5^{\circ}$) inner shelf, (2) deep (100-300 m) and gentle ($0.2^{\circ}$) outer shelf. The continental slope is featured with eight distinct topographic depressions of various spatial dimension (~121 $km^2$ in area) and head wall gradient (${\sim}24.3^{\circ}$). They are developed adjacent to each other and presumably formed by submarine landslides which have recurred under the strong influences of earthquakes and eustatic sea-level change. The inner continental shelf and the continental slope are dominated by fine-grained sediment, whereas the outer continental shelf is dominated by coarse-grained sediment. The surface sediment distribution seems dominantly influenced by eustatic sea-level change. The outer continental shelf is mostly covered by coarse relict sediment deposited during lowstand sea-level, while the inner shelf is covered with recent sediment during highstand sea-level. The surface of the continental slope is covered with fine-grained sediments which were supplied by hemipelagic advection process.

Provenance of the ARA07C-St02B Core Sediment from the East Siberian Margin (동시베리아해 연변부 ARA07C-St02B 코어 퇴적물의 기원지 연구)

  • Koo, Hyo Jin;Lim, Gi Taek;Cho, Hyen Goo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.13-24
    • /
    • 2022
  • The Arctic Ocean is very sensitive to global warming and Arctic Ocean sediments provide a records of terrestrial climate change, analyzing their composition helps clarify global warming. The gravity core sediment ARA07C-St02B was collected at the East Siberian margin during an Arctic expedition in 2016 on the Korean ice-breaking vessel ARAON, and its provenance was estimated through sedimentological, mineralogical and geochemical analysis. The core sediment was divided into four units based on sediment color, sand content and ice-rafted debris content. Units 1 and 3 had higher sand and ice-rafted debris contents than units 2 and 4, and contained a brown layer, whereas units 2 and 4 were mainly composed of a gray layer. Correlation analysis using the adjacent core sediment ARA03B-27 suggested that the sediment units were deposited during marine isotope stage 1 to 4. The bulk mineral, clay mineral, and geochemical compositions of units including a brown layer differed from units including a gray layer. Bulk and clay mineral compositions indicated that coarse and fine sediments had a different origin. Coarse sediments might have been deposited mostly by the East Siberian Coastal Current from the Laptev Sea and the East Siberian Sea or by the Beaufort Gyre from the Chukchi Sea, whereas fine sediments might have been transpoted mostly by currents from the East Siberian Sea, the Chukchi Sea and the Beaufort Sea. Some of the coarse sediments in unit 1 and fine sediments in unit 3 might have been deposited by iceberg ice, sea ice or current from the Beaufort Sea and the Canada Archipelago. Investigating the geochemical composition of the potential origins will elucidate the origin and transportation of the study area's core sediments.