• Title/Summary/Keyword: 조립식 압축부재

Search Result 7, Processing Time 0.016 seconds

An Experimental Study of Buckling Behavior in Built-up Compression Member with Unsymmetric Connectors II - Effect of Type of Connection Members - (비대칭 연결재를 갖는 조립식 압축부재의 좌굴 거동에 관한 실험 연구 II - 연결재 종류의 영향 -)

  • Kang, Sanghoon;Han, Manyop;Cho, Byeongdu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.217-225
    • /
    • 2012
  • Structural behavior of built-up compression members with unsymmetric connectors under buckling status has been studied through these experiments. When the distance between adjacent H-300 beams of built-up compression member is 2 m in length, and the H-300 beams are lengthened up to 30 m in length with three-10 m-H-beams by bolts and double arrayed, three specimen having each connector plate, single channel, double channel are experimented for evaluating buckling loads. The buckling loads from the experiments are compared with buckling loads of structural analysis using FEM and buckling loads of Timoshenko Eq. in order to figure out how the connectors' type affects on longitudinal and lateral displacements, also strain of the built-up compression members as well. The result from the experiments show that the buckling loads 4.2% decreases in double channel connectors and 36.6% decreases in single channel connectors than plate connectors.

An Experimental study of Buckling Behavior in Built-up Compression Member with Unsymmetric Connectors I - Effect of Distance of Connecting Members - (비대칭 연결재를 갖는 조립식 압축부재의 좌굴 거동에 관한 실험 연구 I - 연결재 간격의 영향 -)

  • Kang, Sanghoon;Han, Manyop;Cho, Byeongdu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.207-215
    • /
    • 2012
  • Structural behavior of built-up compression members with unsymmetric connectors under buckling status has been studied through these experiments. When the distance between adjacent H-300 beams of built-up compression member is 2 m in length, and the H-300 beams are lengthened up to 30 m in length with three-10 m-H-beams by bolts and double arrayed, three specimen having each connector interval 4 m, 5 m, 6 m are experimented for evaluating buckling loads. The buckling loads from the experiments are compared with buckling loads of structural analysis using FEM and buckling loads of Timoshenko Eq. loads in order to figure out how the connectors' interval affects on longitudinal and lateral displacements, also strain of the built-up compression members as well. The result shows that the buckling loads tend to sharply decrease non-linearly according to connectors' interval increases. As well as that, the differences between experimental buckling loads and theoretical buckling loads and between experimental buckling loads and structural analyses buckling loads also have a tendency to be increased as the connector interval increases.

A Computational Platform for Nonlinear Analysis of Totally Prefabricated Bridge Substructure Systems (완전 조립식 교량 하부구조의 비선형해석을 위한 전산플랫폼)

  • Kim, Tae-Hoon;Shin, Hyun-Mock
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.639-642
    • /
    • 2011
  • 이 연구에서는 완전 조립식 교량 하부구조의 비선형해석을 위한 전산플랫폼을 개발하였다. 완전 조립식 교량 하부구조의 비선형거동을 정확하게 파악하고 합리적이면서 경제적인 설계기준의 개발을 위한 자료를 제공하는데 그 목적이 있다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근모델을 조합하여 고려하였다. 사용된 부착 또는 비부착 텐던요소는 유한요소법에 근거하며 프리스트레스트 콘크리트 부재의 콘크리트와 텐던의 상호작용을 구현할 수 있다. 그리고 접합면요소는 세그먼트 접합부의 비탄성거동을 예측할 수 있다. 제안된 해석기법은 수치예제에 대하여 비선형거동을 비교적 정확하게 예측하였다.

  • PDF

Analytical Study on the Inelastic Behavior of Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각의 비탄성거동에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.29-40
    • /
    • 2005
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.

Analytical Study on Joints in Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각의 접합부에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.79-87
    • /
    • 2007
  • This paper presents an analysis procedures of Joints in precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbended tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for joints in precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.

A Study on the Structural Stability of Prefabricated Strut for Ground Excavation Construction (지반굴착용 조립식 버팀보의 구조 안정성에 관한 연구)

  • Lee, Ki-Sun;Kim, Doo-Hwan;Song, Kwan-Kwon;Kim, Seong-Pil;Kim, Jeong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.75-83
    • /
    • 2018
  • In study, Structural stability was considered when applying the high strength strut method with improved general strut method. considered whether there is sufficient stiffness to so as not buckling to the maximum hypothetical earth pressure. also structure stability of the strut component was reviewed. The high strength strut method is a technique used in place of the general strut method. high strength prefabricated Strut method is a technique that has bolt holes drilled in the upper flange at regular intervals. As a result of the buckling analysis, it was considered that the safety factor increased by about 5 %. also Since the stress generated is below the allowable stress, it is judged that structural stability of the strut is ensured. In particular, the safety factor of axial compressive stress increases about 16 % with use of high strength steel when applying the high strength prefabricated strut method. the high strength strut method is construction method may shorten the construction period and there is no expense to purchase additional materials.

Numerical Evaluation of Stress Loss Rates and Adjusting Coefficients due to Internal and External Constraints of Concrete Long-Term Deformation (콘크리트 장기변형의 내·외부 구속에 의한 응력 손실률 및 수정계수 평가의 전산구조해석)

  • Yon, Jung-Heum;Kim, Hyun-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.429-438
    • /
    • 2013
  • An object oriented numerical analysis program of axial-flexural elements and the step-by-step method (SSM) has been developed to analyze concrete long-term behaviors of structures constrained internally and externally. The results of the numerical analysis for simple and continuous prestressed (PS) concrete box and composite girders, pre-cast slab of continuous steel composite girder, and simple preflex composite girder show that the adjusting coefficient decreases by increasing constraint. The loss rates of pre-tension force were not sensitive but those of pre-compression force were increased rapidly by decreasing adjusting coefficient. This indicates that the design based on the loss rate of pre-tension can over-estimate the pre-compression force in a concrete section constrained internally and externally. The adjusting coefficients which satisfy results of the numerical analysis are 0.35~0.95, and it can be used as an index of constraint of concrete long-term deformation. The adjusting coefficient 0.5 of Bridge Design Specifications can under-estimate residual stress of PS concrete slab, and the coefficient 0.7 or 0.8 of LRFD Bridge Designing Specifications can under-estimate the loss rates of continuous PS concrete girders. The adjusting coefficient of hybrid structures should be less then 0.4.