• Title/Summary/Keyword: 조류생산 시스템

Search Result 46, Processing Time 0.021 seconds

Development of Germline Chimera Production System by Spermatogonial Stem Cell Transplantation in Chicken

  • Lee, Young-Mok;Kim, Jin-Nam;Park, Tae-Sub;Kim, Duk-Kyung;Hong, Yeong-Ho;Lim, Jeong-Mook;Han, Jae-Yong
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2003.11a
    • /
    • pp.71-72
    • /
    • 2003
  • 최근 생쥐에서 정원세포를 이용한 생식선 카이메라의 생산이 보고되었다. 정원세포의 경우 성축으로부터 세포를 다량으로 얻기가 쉬우며, 수용체 정소 내로 이식될 경우 생식선 카이메라의 생산능력이 있어서 이전의 배아줄기 세포를 이용할 때의 문제점을 효율적으로 해결할 수 있다. 또한 유전자가 도입된 정원세포의 이식에 의한 수용체 정소 내에서의 정자형성의 보고는 정원세포를 이용한 형질전환 동물의 생산 시스템으로의 개발 가능성을 보여준다. 본 실험에서는 닭에서 기존에 이용되어 왔던 형질전환 동물 생산 시스템의 문제점을 극복하고자 주령별 정원세포의 분리 및 이식을 통하여 조류에서 정원세포의 이식방법을 확립하고 생식선 카이메라 생산효율을 증진시키기 위하여 불임제인 부설판 등을 이용한 불임화 기술을 확립하여, 결국 조류에서의 형질전환 조류 생산 시스템으로서의 개발가능성을 제시하고자 한다.

  • PDF

선박 안전 입출항 지원을 위한 해양환경정보 제공기술 개발

  • Lee, Mun-Jin;Kim, Seon-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.155-156
    • /
    • 2014
  • 선박의 안전한 입출항 지원을 위한 항만항행 환경정보로서 해양환경정보 제공기술을 개발하였다. 선박 안전 입출항을 위한 해양환경정보로는 바람, 조류, 조위, 수심 등의 정보를 고려하였으며, 각각 해역 전체의 공간분포와 항로상 변동을 제공할 수 있도록 정보를 생산하였다. 바람은 기상청의 예보자료를 활용하여 항만 공간 규모에 적합하도록 상세 공간 간격으로 최적화하여 생산하였으며, 조류와 조류는 자체적으로 개발한 조석조류 수치모델 결과에 기반한 실시간 예측 기법을 적용하여 생산하였다. 수심은 해도에 제시된 약최저저조면의 수심에 실시간 조위 변동을 적용하여 선박에서 만나게 될 실제 수심을 생산하였다. 제공 정보 중 공간 분포는 사용자가 원하신 시간에 대해 해역 전체의 정보를 제공하며, 항로상 정보는 선박이 운항하게 될 항적 계획에 따라 공간적으로 시간적으로 변동하는 정보를 제공한다. 본 연구의 결과는 항만 입출항 선박의 안전운항에 기여할 것으로 기대된다.

  • PDF

Biodiesel Production and Nutrients Removal from Piggery Manure Using Microalgal Small Scale Raceway Pond (SSRP) (미세조류 옥외배양 시스템을 이용한 돈분 액체 비료의 영양염류 제거 및 바이오디젤 생산)

  • Choi, Jong-Eun;Kim, Byung-Hyuk;Kang, Zion;Oh, Hee-Mock;Kim, Hee-Sik
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.1
    • /
    • pp.26-34
    • /
    • 2014
  • Due to the rapid energy consumption and fossil fuel abundance reduction, the world is progressively in need of alternative and renewable energy sources such as biodiesel. Biodiesel from microalgae offers high hopes to the scientific world for its potential as well as its non-competition with arable lands. Taking consideration to reduce the cost of production as well as to attain twin environmental goals of treatment and use of animal waste material the microalgal cultivation using piggery manure has been tested in this study. Unialgal strains such as Chlorella sp. JK2, Scenedesmus sp. JK10, and an indigenous mixed microalgal culture CSS were cultured for 20 days in diluted piggery manure using Small Scale Raceway Pond (SSRP). Biomass production and lipid productivity of CSS were $1.19{\pm}0.09gL^{-1}$, $12.44{\pm}0.38mgL^{-1}day^{-1}$, respectively and almost twice that of unialgal strains. Also, total nitrogen and total phosphorus removal efficiencies of CSS was 93.6% and 98.5% respectively and 30% higher removal efficiency compared to the use of unialgal strains. These results indicate that the piggery manure can provide microalgae necessary nitrogen and phosphorus for growth thereby effectively treating the manure. In addition, overall cost of microalgal cultivation and subsequently biodiesel production would be significantly reduced.

ICT Convergenced Cascade-type Incubator for mass production of microalgae (미세조류 대량생산을 위한 ICT 융합 계단식 연속 배양 장치)

  • Lee, Geon Woo;Lee, Yong Bok;Yoo, Yong Jin;Baek, Dong Hyun;Kim, Jin Woo;Kim, Ho Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.379-386
    • /
    • 2021
  • This study was undertaken to develop a cascade-type continuous culture system (CCCS) that combines both ICT and biotechnology (BT), for the mass production of microalgae. This system is capable of maintaining the essential culture conditions of pH, temperature, carbon dioxide, and illuminance control, which are key parameters for the growth of microalgae, and is economical for producing microalgae regardless of the season or location. It has the added advantage of providing stable and high productivity. In the current study, this system was applied to culture microalgae for 71 days, with subsequent analysis of the experimental data. The initial O.D. of the culture measured from incubator 1 was 0.006. On the 71st day of culture, the O.D.s obtained were 0.399 (incubator 1), 0.961 (incubator 2), 0.795 (incubator 3), and 0.438 (incubator 4), thereby confirming the establishment of continuous culture. Thus, we present a smart-farm based on ISMC (in-situ monitoring and control) for a mass culture method. We believe that this developed technology is suitable for commercialization, and has the potential to be applied to hydroponics-based cultivation of microalgae and cultivation of high-value-added medicinal plants as well as other plants used in functional foods, cosmetics, and medical materials.

Municipal Wastewater Treatment and Microbial Diversity Analysis of Microalgal Mini Raceway Open Pond (미세조류 옥외 배양시스템을 이용한 도시하수 정화 및 미생물 군집다양성 분석)

  • Kang, Zion;Kim, Byung-Hyuk;Shin, Sang-Yoon;Oh, Hee-Mock;Kim, Hee-Sik
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.192-199
    • /
    • 2012
  • Microalgal biotechnology has gained prominence because of the ability of microalgae to produce value-added products including biodiesel through photosynthesis. However, carbon and nutrient source is often a limiting factor for microalgal growth leading to higher input costs for sufficient biomass production. Use of municipal wastewater as a low cost alternative to grow microalgae as well as to treat the same has been demonstrated in this study using mini raceway open ponds. Municipal wastewater was collected after primary treatment and microalgae indigenous in the wastewater were encouraged to grow in open raceways under optimum conditions. The mean removal efficiencies of TN, TP, COD-$_{Mn}$, $NH_3$-N after 6 days of retention time was 80.18%, 63.56%, 76.34%, and 96.74% respectively. The 18S rRNA gene analysis of the community revealed the presence of Chlorella vulgaris and Scenedesmus obliquus as the dominant microalgae. In addition, 16S rRNA gene analysis demonstrated that Rhodobacter, Luteimonas, Porphyrobacter, Agrobacterium, and Thauera were present along with the microalgae. From these results, it is concluded that microalgae could be used to effectively treat municipal wastewater without aerobic treatment, which incurs additional energy costs. In addition, municipal wastewater shall also serve as an excellent carbon and nitrogen source for microalgal growth. Moreover, the microalgal biomass shall be utilized for commercial purposes.

Development of Early Forecasting System using GIS and Prediction Model related to the Cyanobacterial Blooming in the Daecheong Reservoir of Korea (예보모델과 GIS를 기반한 대청호의 남조류 발생에 대한 조기예보시스템 개발)

  • Kim, Man-Kyu;Park, Jong-Chul;Kim, Kwang-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.91-102
    • /
    • 2007
  • To anticipate and respond to harmful algae produced in a big artificial lake like Daecheong reservoir, development of a regional analysis computer system using GIS or RS technique is needed in addition to biological and chemical research. The purpose of this study is to develop a cyanobacterial blooming prediction model to prevent harmful algae produced in Daecheong reservoir and construct an early forecasting system based on GIS. For this purpose this paper examines previous studies related to the relationship between cyanobacteria and environmental factors in Daecheong reservoir and selects precipitation and air temperature as two important environmental factors for the development of cyanobacterial blooming prediction model. Data used in this study are water quality and weather data for three water regions in Daecheong reservoir between 2000 and 2004. Based on qualitative correlation analysis between cyanobacteria and environmental factors, this paper presents a Rump model which enables us to predict cyanobacteria in water regions of Daecheong reservoir. Under this model the prediction of initial occurrence time and growth period of cyanobacteria are possible. The model is also applied to the GIS-based early forecasting system for cyanobacteria, and finally a GIS which can predict cyanobacteria produced in Daecheong reservoir and can manage the related data is developed.

  • PDF

Production of Biodiesel and Nutrient Removal of Municipal Wastewater using a Small Scale Raceway Pond (미세조류 옥외 배양시스템을 이용한 바이오디젤 생산 및 도시하수 영양 염류 제거)

  • Kang, Zion;Kim, Byung-Hyuk;Oh, Hee-Mock;Kim, Hee-Sik
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.207-214
    • /
    • 2013
  • A concerted effort to develop alternative forms of energy is underway due to fossil fuel shortages and its deleterious effects. Recently, bioenergy from microalgae has gained prominence and the use of municipal wastewater as a low cost alternative for a nutrient source has significant advantages. In this study, we have employed municipal wastewater directly after primary treatment (primary settling basin) in a small scale raceway pond (SSRP) for microalgal growth. Indigenous microalgae in the wastewater were encouraged to grow in the SSRP under optimal conditions. The mean removal efficiencies of TN, TP, and $NH_3-N$ after 6 days were 77.77%, 63.55%, and 89.02%, respectively. The average lipid content of the microalgae was 19.51% of dry cell weight, and linolenate and linoleate (18:n) were the predominant fatty acids. The 18S rRNA gene analysis and microscopic observations of the indigenous microalgae community revealed the presence of Chlorella vulgaris and Scenedesmus obliquus as the dominant microalgae. These results indicate that untreated municipal wastewater, serving as an excellent nitrogen and phosphate source for microalgal growth, could be treated using microalgae in open raceway ponds. Moreover, microalgal biomass could be further profitable by the extraction of biodiesel.

Numerical Analysis of HAT Tidal Current Rotors (수평축 조류발전로터 성능실험의 수치적 재현과 연구)

  • Jo, Chul-Hee;Yim, Jin-Young;Lee, Kang-Hee;Chae, Kwang-Su;Rho, Yu-Ho;Song, Seung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.620-623
    • /
    • 2009
  • 여러 해양에너지 중 유체의 빠른 흐름을 이용하는 조류발전은 서해안과 남해안에 적용하기에 적합하며 해양환경의 영향을 최소화 하면서 많은 에너지를 연속적으로 생산할 수 있는 장점이 있다. 조류발전에서 1차적으로 에너지를 변환시키는 로터는 조류발전시스템의 주요한 장치중의 하나로 여러 변수에 의해 그 성능이 결정된다. 블래이드 수, 형상, 단면적, 허브, 직경 등 여러 요소를 고려하여 로터를 설계하며, 설계정보와 실험데이터를 바탕으로 수치모델을 구현하여 실험에서 직접 계측할 수 없는 로터 주변의 유체현상 및 간섭영향 등을 예측할 수 있다. 본 논문에서는 변화하는 유속에 따른 HAT 로터의 시동속도, 회전수를 측정하여 로터 형상과 허브-직경비가 다른 로터의 성능을 고찰하고, 이를 수치모델로 구현하여 로터주변 유동변화를 연구하였다.

  • PDF

The Effect of Microalgal Growth on Nutrient Sources Using Microalgal Small Scale Raceway Pond (SSRP) for Biodiesel Production (바이오디젤 생산을 위한 미세조류 옥외배양 시스템의 영양원에 따른 미세조류 성장 특성 비교)

  • Kim, Dong-Ho;Kim, Byung-Hyuk;Choi, Jong-Eun;Kang, Zion;Kim, Hee-Sik
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.313-318
    • /
    • 2014
  • The world is in need of sustainable and eco-friendly energy sources such as microalgal biodiesel due to global warming and fossil fuel shortages. In this study, we compared the effectiveness of liquid fertilizer produced from swine manure and agriculture grade solid fertilizers as nutrient sources for microalgal biomass production. Mixed culture (Chlorella spp., Scenedesmus spp., Stigeoclonium spp.; CSS) was cultivated for 28 days in Small Scale Raceway Pond (SSRP) using various nutrient sources (swine manure liquid fertilizer, agricultural solid fertilizer, and mixture of these two fertilizers). Biomass and lipid productivity of fertilizer mixture were the highest at 0.8 g/L and 5.8 mg/L/day, respectively. These results indicate that the fertilizer mixture can provide microalgae necessary nutrient sources for stable biodiesel production and biomass growth. In addition, overall cost of microalgal cultivation and subsequently biodiesel production would be significantly reduced.