• 제목/요약/키워드: 조건부 생성모델

검색결과 16건 처리시간 0.03초

SaJuTeller: 조건부 생성 모델을 기반으로 한 인공지능 사주 풀이 모델 (SaJuTeller: Conditional Generation Deep-Learning based Fortune Telling Model)

  • 문현석;이정섭;서재형;어수경;박찬준;김우현;박정배;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.277-283
    • /
    • 2022
  • 사주 풀이란 주어진 사주에 대해서 그에 맞는 해석 글을 생성해주는 작업을 의미한다. 전통적으로 사주 풀이는 온전한 사람의 영역으로 인식되어왔으나, 우리는 본 연구를 통해 사주 풀이 영역도 인공지능으로 대체할 수 있을 것이라는 가능성을 탐구한다. 본 연구에서 우리는 최근 연구되고 있는 자연어 생성분야의 연구들에서 영감을 받아, 사주 유형과 사주 풀이 내에 포함할 명사 키워드를 기반으로 풀이글을 생성하는 인공지능 모델 SaJuTeller를 설계한다. 특히 이전 문맥을 고려하여 풀이글을 생성하는 모델과 단순 사주 유형 및 명사 키워드를 기반으로 풀이글을 생성하는 두가지 모델을 제안하며, 이들 각각의 성능을 분석함으로써 각 모델의 구체적인 활용 방안을 제안한다. 본 연구는 우리가 아는 한 최초의 인공지능 기반 사주풀이 연구이며, 우리는 이를 통해 사주풀이에 요구되는 전문인력의 노력을 경감시킴과 동시에, 다양한 표현을 가진 사주 풀이 글을 생성할 수 있음을 제안한다.

  • PDF

부분어절 조건부확률 기반 동형이의어 태깅 모델 (Korean Homograph Tagging Model based on Sub-Word Conditional Probability)

  • 신준철;옥철영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권10호
    • /
    • pp.407-420
    • /
    • 2014
  • 한국어 형태소 분석 및 태깅은 크게 2가지 단계로 나뉜다. 첫 번째 단계는 어절을 분석하여 후보들을 생성하는 것으로, 여러 의미를 가진 어절은 이 단계에서 다양한 후보들이 생성된다. 두 번째는 문맥 정보를 이용하여 후보 중에 가장 적절한 하나를 선택하는 단계로, 흔히 태깅이라 한다. 일반적으로 두 번째 단계에서는 은닉 마르코프 모델(Hidden Markov Model, 이하 HMM)을 자주 사용하지만, 본 논문에서는 처리속도를 향상시킨 부분어절 조건부확률 모델을 제안한다. 이 모델은 우선적으로 인접 어절 정보를 이용하여 현재 처리 중인 어절의 의미를 결정하고, 예외적으로 용언이 인접한 경우에만 후보 정보의 극히 일부분을 이용한다. 실험 결과 정확률은 HMM의 96.49%보다 0.07% 낮았지만, 처리 소요 시간을 약 53% 감소시켰다.

섬유 드레이프 이미지를 활용한 드레이프 생성 모델 구현에 관한 연구 (A Study on the implementation of the drape generation model using textile drape image)

  • 손재익;김동현;최윤성
    • 스마트미디어저널
    • /
    • 제10권4호
    • /
    • pp.28-34
    • /
    • 2021
  • 드레이프는 의상의 외형을 결정하는 요인 중 하나로 섬유·패션 산업에서 매우 중요한 요소 중 하나이다. 코로나 바이러스의 영향으로 비대면 거래가 활성화되고 있는 시점에서, 드레이프값을 요구하는 업체들이 많아지고 있다. 하지만 중소기업이나 영세 기업의 경우, 드레이프를 측정하는 것에 대한 시간과 비용적 부담을 느껴, 드레이프를 측정하는 데에 어려움을 겪고 있다. 따라서 본 연구는 디지털 물성을 측정하여 생성된 3D 시뮬레이션 이미지를 통해 조건부 적대적 생성 신경망을 이용하여 입력된 소재의 물성값에 대한 드레이프 이미지 생성을 목표로 하였다. 기존 보유한 736개의 디지털 물성값을 통해, 드레이프 이미지를 생성하였으며, 이를 모델 학습에 이용하였다. 이후 생성 모델을 통해 나온 이미지 샘플에 대하여 드레이프 값을 계산하였다. 실제 드레이프 실험 값과 생성 드레이프 값 비교결과, 첨두수의 오차는 0.75개였으며, 드레이프값의 평균 오차는 7.875의 오차를 보임을 확인할 수 있었다.

표층 구문 타입을 사용한 조건부 연산 모델의 일반화 LR 파서 (Generalized LR Parser with Conditional Action Model(CAM) using Surface Phrasal Types)

  • 곽용재;박소영;황영숙;정후중;이상주;임해창
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권1_2호
    • /
    • pp.81-92
    • /
    • 2003
  • 일반화 LR(Generalized LR, 이하 GLR) 파싱은 선형 스택을 사용하는 전통적인 LR 파싱 방식의 한계를 극복하도록 만들어진 LR 파싱 기법의 하나로서, LR 기법에 여러 가지 매커니즘을 통합하여 자연어 파싱에 응용하는 작업의 토대가 되어 왔다. 본 논문에서는 기존의 확률적 LR 파싱 기법이 가지고 있는 문제를 개선한 조건부 연산 모델(Conditional Action Model)을 제안한다. 기존의 확률적 LR 파싱 기법은 그래프 구조 스택의 복잡성으로 인해 상대적으로 제한된 문맥 정보만을 사용하여 왔다. 제안된 모델은 부분 생성 파스의 표현을 위하여 표층 구문 타입(Surface Phrasal Type)을 사용하여 그래프 구조 스택에 들어 있는 구문 구조를 기술함으로써 좀 더 세분된 구조적 선호도를 파서에 반영시킬 수 있다. 실험 결과, 어휘를 고려하지 않고 학습한 조건부 연산 모델로 구현된 본 GLR 파서는 기존의 방식보다 약 6-7%의 정확도 향상을 보였으며, 본 모델을 통해 풍부한 스택 정보를 확률적 LR 파서의 구조적 중의성 해결에 효과적으로 사용할 수 있음을 보였다.

XForms 페이지의 접근제어를 위한 공유 조건식의 효율적 계산 방법 (Efficient Evaluation of Shared Predicates for XForms Page Access Control)

  • 이은정
    • 정보처리학회논문지D
    • /
    • 제15D권4호
    • /
    • pp.441-450
    • /
    • 2008
  • 최근 폼 기반의 웹 시스템에 대한 접근 제어 방법이 서비스 기반 아키텍처를 가지는 클라이언트 시스템 구현에 유용한 방법으로 주목받고있다. 특히 XForms 언어는 서버와 상호작용하는 XML 기반의 사용자 인터페이스를 기술하는 언어로 많이 채용되고 있다. 이 논문에서는 XForms 페이지에 대한 XPath 기반의 접근 제어 규칙을 효율적으로 계산하는 알고리즘을 제안한다. XForms 페이지는 바인딩된 XML 노드에대한 연속된 질의로 모델링할 수 있으며 클라이언트 시스템은 사용자 인터페이스를 생성하면서 XPath 규칙을 계산한다. XPath 규칙은 인스턴스 데이터를 이용하는 조건부를 가지는데 이 조건부의 계산이 규칙들 사이에 또 연속된 질의 사이에 중복되는 경우가 많다. 중복되는 조건부의 효율적인 계산을 위해서 조건부 그래프 모델을 제안하여 동일한 컨텍스트 노드에 대해 이전에 계산된 결과를 재사용하는 방법을 제안하였다. 이 방법은 각 조건부 식이 해당되는 XML 노드에 대해 한번만 계산되는 것을 보장한다.

조건부 생성모델을 이용한 강수 패턴에 따른 지하수위 생성 및 이의 활용에 관한 연구 (The Applicability of Conditional Generative Model Generating Groundwater Level Fluctuation Corresponding to Precipitation Pattern)

  • 정지호;정진아;이병선;송성호
    • 자원환경지질
    • /
    • 제54권1호
    • /
    • pp.77-89
    • /
    • 2021
  • 본 연구에서는 Jeong et al. (2020)의 연구에서 수행된 지하수위 변동 패턴의 저차원 특징추출 과정의 문제점을 분석하고, 이에 대한 개선방안이 제안된다. 해당 연구에서는 Denoising autoencoder (DAE)를 이용해 전국의 연 단위 지하수위 변동 자료로부터 저차원 특징이 추출되며, 추출된 자료를 이용해 대수층의 수리 특성값을 예측하는 회귀 모델이 개발되었다. 그러나 특정 지역의 연도별 강수 패턴이 달라질 경우, 지하수위 변동 패턴 및 저차원 특징 또한 달라지며, 이에 따라 동일 지역임에도 불구하고 저차원 특징으로부터 추정되는 수리 특성값이 다양하게 나타날 수 있다. 이러한 문제를 해결하기 위해, 본 연구에서는 조건부 생성 모델인 Conditional variational autoencoder (CVAE)를 이용하였으며, 전국 71개 지역에서 10년 동안 획득된 지하수위 자료와 강수 자료 간 상관관계가 학습되었다. 학습된 모델을 통해 모든 지역에 대해 동일 강수 조건이 적용될 때의 지하수위 자료가 생성되었으며, 생성된 지하수위 자료로부터 저차원 특징이 추출되었다. CVAE를 이용해 동일 강수 조건으로 생성된 지하수위 자료의 저차원 특징과 기존 DAE를 통해 추출된 저차원 특징이 비교되었으며, 그 결과 CVAE를 이용해 추출된 저차원 특징 간 거리가 저차원 공간상에서 보다 가깝게 분포하는 것이 확인되었다. 따라서 제안된 방법을 이용할 경우 대수층 특성에만 영향을 받는 지역별 지하수위 자료 및 저차원 특징이 효과적으로 추출될 수 있으며, 이를 통해 기존 개발된 회귀 모델의 성능이 개선될 수 있을 것으로 판단된다.

가상예제를 이용한 수치 및 범주 속성 데이터의 분류 성능 향상 (Improving Classification Accuracy for Numerical and Nominal Data using Virtual Examples)

  • 이유정;강재호;강병호;류광렬
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.183-188
    • /
    • 2006
  • 본 논문에서는 베이지안 네트워크를 기반으로 생성하고 평가한 가상예제를 활용하여 범주속성 및 수치속성 데이터에 대한 분류 성능을 향상시키는 방안을 제안한다. 가상예제를 활용하는 종래의 연구들은 주로 수치 속성 데이터를 대상으로 한 반면 본 연구에서는 범주속성 데이터에 대해서도 가상예제를 적용하여 효과를 확인하였다. 그리고 대상 도메인에 특화된 지식을 활용하여 특정 학습 알고리즘의 성능을 향상시키는 것을 목표로 한 기존 연구들과는 달리 본 연구에서는 도메인에 특화된 지식을 활용하는 대신 주어진 훈련 집합을 기반으로 만든 베이지안 네트워크로부터 가상예제를 생성하고, 그 예제가 네트워크의 조건부 우도를 증가시키는데 기여할 경우 유용한 것으로 선별한다. 이러한 생성 및 선별과정을 반복하여 적절한 크기의 가상예제 집합을 수집하여 사용한다. 범주 속성 데이터와 수치 속성을 포함한 데이터를 대상으로 한 실험 결과, 여러 가지 학습 모델의 성능이 향상됨을 확인하였다.

  • PDF

분류기 성능 향상을 위한 범주 속성 가상예제의 생성과 선별 (Generation and Selection of Nominal Virtual Examples for Improving the Classifier Performance)

  • 이유정;강병호;강재호;류광렬
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권12호
    • /
    • pp.1052-1061
    • /
    • 2006
  • 본 논문에서는 베이지안 네트워크를 기반으로 생성하고 평가한 가상예제를 활용하여 범주 속성 데이타에 대한 분류 성능을 향상시키는 방안을 제안한다. 가상예제를 활용하는 종래의 연구들은 주로 수치 속성 데이타를 대상으로 하였고, 대상 도메인에 특화된 지식을 활용하여 특정 학습 알고리즘의 성능을 향상시키는 것을 목표로 하였다. 본 연구에서는 도메인에 특화된 지식을 활용하는 대신 주어진 훈련 집합을 기반으로 만든 베이지안 네트워크로부터 범주 속성 가상예제를 생성하고, 그 예제가 네트워크의 조건부 우도를 증가시키는데 기여할 경우 유용한 것으로 선별한다. 이러한 생성 및 선별과정을 반복하여 적절한 크기의 가상예제 집합을 수집하여 사용한다. 범주 속성 데이타를 대상으로 한 실험 결과, 여러 가지 학습 모델의 성능이 향상됨을 확인하였다.

시점 불변인 특징과 확률 그래프 모델을 이용한 인간 행위 인식 (Human Activity Recognition using View-Invariant Features and Probabilistic Graphical Models)

  • 김혜숙;김인철
    • 정보과학회 논문지
    • /
    • 제41권11호
    • /
    • pp.927-934
    • /
    • 2014
  • 본 논문에서는 Kinect와 같은 RGB-D 센서를 이용하여 사람의 3차원 신체 포즈 스트림 데이터를 생성하고, 이로부터 사람의 일상 행위를 효과적으로 인식하는 방법을 제안한다. Kinect SDK나 OpenNI에서 제공하는 실시간 신체 포즈 데이터는 Kinect 중심의 3차원 데카르트 좌표계로 표현되기 때문에, 시점 변화 문제와 크기 변화 문제를 겪을 가능성이 높다. 이러한 문제를 해결하고 시점 및 크기 불변인 특징을 얻기 위해, 본 논문에서는 신체 포즈 데이터를 실험자의 골반을 원점으로 하는 구면 좌표계로 변환하고 실험자의 팔 길이를 이용한 크기 정규화를 수행한다. 또한, 본 논문에서는 확률 그래프 모델 중 하나인 은닉 조건부 랜덤 필드를 이용하여, 고수준의 일상 행위들이 내포하는 다양한 내부 구조를 효과적으로 표현한다. 두 가지 데이터 집합 KAD-70과 CAD-60을 이용한 실험을 통해, 본 논문에서 제안한 행위 인식 방법과 구현 시스템의 높은 인식 성능을 확인하였다.

다중 자료 변환을 이용한 구성 자료의 지구통계학적 시뮬레이션 (Geostatistical Simulation of Compositional Data Using Multiple Data Transformations)

  • 박노욱
    • 한국지구과학회지
    • /
    • 제35권1호
    • /
    • pp.69-87
    • /
    • 2014
  • 이 논문에서는 구성 자료의 지구통계학적 시뮬레이션을 위해 다중 자료 변환 기반 조건부 시뮬레이션 틀을 제안하였다. 우선 일반적인 통계 기법의 적용이 가능하도록 구성 자료에 로그비 변환을 적용하였다. 다음 변환들로는 최소/최대 자기상관 인자 변환과 지시자 변환을 순차적으로 적용하였다. 독립적인 새로운 변수의 생성을 위해 최소/최대 자기상관 인자 변환을 적용하였으며, 적용 결과 개별 변수들의 독립적인 시뮬레이션이 가능해진다. 그리고 다중 가우시안 확률 모델을 따르지 않는 변수들의 비모수적 조건부 누적 확률 분포 모델링을 위해 지시자 변환을 적용하였다. 최종적으로는 적용한 변환 방법들의 역순으로 역 변환을 적용하였다. 간석지 표층 퇴적물 성분 자료를 대상으로 제안 시뮬레이션 기법의 적용 가능성을 예시하였다. 모든 시뮬레이션 결과들은 구성 자료의 제한 조건을 만족하면서 샘플 자료의 통계 특성을 잘 반영하였다. 구성 자료의 다수의 시뮬레이션 결과들을 이용한 표층 퇴적물 분류를 통해 기존 크리깅에서는 얻을 수 없는 분류 결과의 확률론적 평가가 가능하였다. 따라서 제안 시뮬레이션 틀은 다양한 구성 자료의 지구통계학적 시뮬레이션에 효과적으로 이용될 수 있을 것으로 기대된다.