Annual Conference on Human and Language Technology
/
2022.10a
/
pp.277-283
/
2022
사주 풀이란 주어진 사주에 대해서 그에 맞는 해석 글을 생성해주는 작업을 의미한다. 전통적으로 사주 풀이는 온전한 사람의 영역으로 인식되어왔으나, 우리는 본 연구를 통해 사주 풀이 영역도 인공지능으로 대체할 수 있을 것이라는 가능성을 탐구한다. 본 연구에서 우리는 최근 연구되고 있는 자연어 생성분야의 연구들에서 영감을 받아, 사주 유형과 사주 풀이 내에 포함할 명사 키워드를 기반으로 풀이글을 생성하는 인공지능 모델 SaJuTeller를 설계한다. 특히 이전 문맥을 고려하여 풀이글을 생성하는 모델과 단순 사주 유형 및 명사 키워드를 기반으로 풀이글을 생성하는 두가지 모델을 제안하며, 이들 각각의 성능을 분석함으로써 각 모델의 구체적인 활용 방안을 제안한다. 본 연구는 우리가 아는 한 최초의 인공지능 기반 사주풀이 연구이며, 우리는 이를 통해 사주풀이에 요구되는 전문인력의 노력을 경감시킴과 동시에, 다양한 표현을 가진 사주 풀이 글을 생성할 수 있음을 제안한다.
KIPS Transactions on Software and Data Engineering
/
v.3
no.10
/
pp.407-420
/
2014
In general, the Korean morpheme analysis procedure is divided into two steps. In the first step as an ambiguity generation step, an Eojeol is analyzed into many morpheme sequences as candidates. In the second step, one appropriate candidate is chosen by using contextual information. Hidden Markov Model(HMM) is typically applied in the second step. This paper proposes Sub-word Conditional Probability(SCP) model as an alternate algorithm. SCP uses sub-word information of adjacent eojeol first. If it failed, then SCP use morpheme information restrictively. In the accuracy and speed comparative test, HMM's accuracy is 96.49% and SCP's accuracy is just 0.07% lower. But SCP reduced processing time 53%.
Drape is one of the factors that determine the shape of clothes and is one of the very important factors in the textile and fashion industry. At a time when non-face-to-face transactions are being activated due to the impact of the coronavirus, more and more companies are asking for drape value. However, in the case of small and medium-sized enterprises (SMEs), it is difficult to measure the drape, because they feel the burden of time and money for measuring the drape. Therefore, this study aimed to generate a drape image for the material property value input using a conditional adversarial neural network through 3D simulation images generated by measuring digital properties. A drape image was created through the existing 736 digital property values, and this was used for model training. Then, the drape value was calculated for the image samples obtained through the generative model. As a result of comparing the actual drape experimental value and the generated drape value, it was confirmed that the error of the peak number was 0.75, and the average error of the drape value was 7.875
Generalized LR parsing is one of the enhanced LR parsing methods so that it overcome the limit of one-way linear stack of the traditional LR parser using graph-structured stack, and it has been playing an important role of a firm starting point to generate other variations for NL parsing equipped with various mechanisms. In this paper, we propose a conditional Action Model that can solve the problems of conventional probabilistic GLR methods. Previous probabilistic GLR parsers have used relatively limited contextual information for disambiguation due to the high complexity of internal GLR stack. Our proposed model uses Surface Phrasal Types representing the structural characteristics of the parse for its additional contextual information, so that more specified structural preferences can be reflected into the parser. Experimental results show that our GLR parser with the proposed Conditional Action Model outperforms the previous methods by about 6-7% without any lexical information, and our model can utilize the rich stack information for syntactic disambiguation of probabilistic LR parser.
Recently, access control on form-based web information systems has become one of the useful methods for implementing client systems in a service-oriented architecture. In particular, XForms language is being adopted in many systems as a description language for XML-based user interfaces and server interactions. In this paper, we propose an efficient algorithm for the evaluation of XPath-based access rules for XForms pages. In this model, an XForms page is a sequence of queries and the client system performs user interface realization along with XPath rule evaluations. XPath rules have instance-dependent predicates, which for the most part are shared between rules. For the efficient evaluation of shared predicate expressions in access control rules, we proposed a predicate graph model that reuses the previously evaluated results for the same context node. This approach guarantees that each predicate expression is evaluated for the relevant xml node only once.
In this study, a method has been proposed to improve the performance of hydraulic property estimation model developed by Jeong et al. (2020). In their study, low-dimensional features of the annual groundwater level (GWL) fluctuation patterns extracted based on a Denoising autoencoder (DAE) was used to develop a regression model for predicting hydraulic properties of an aquifer. However, low-dimensional features of the DAE are highly dependent on the precipitation pattern even if the GWL is monitored at the same location, causing uncertainty in hydraulic property estimation of the regression model. To solve the above problem, a process for generating the GWL fluctuation pattern for conditioning the precipitation is proposed based on a conditional variational autoencoder (CVAE). The CVAE trains a statistical relationship between GWL fluctuation and precipitation pattern. The actual GWL and precipitation data monitored on a total of 71 monitoring stations over 10 years in South Korea was applied to validate the effect of using CVAE. As a result, the trained CVAE model reasonably generated GWL fluctuation pattern with the conditioning of various precipitation patterns for all the monitoring locations. Based on the trained CVAE model, the low-dimensional features of the GWL fluctuation pattern without interference of different precipitation patterns were extracted for all monitoring stations, and they were compared to the features extracted based on the DAE. Consequently, it can be confirmed that the statistical consistency of the features extracted using CVAE is improved compared to DAE. Thus, we conclude that the proposed method may be useful in extracting a more accurate feature of GWL fluctuation pattern affected solely by hydraulic characteristics of the aquifer, which would be followed by the improved performance of the previously developed regression model.
Proceedings of the Korean Information Science Society Conference
/
2006.10b
/
pp.183-188
/
2006
본 논문에서는 베이지안 네트워크를 기반으로 생성하고 평가한 가상예제를 활용하여 범주속성 및 수치속성 데이터에 대한 분류 성능을 향상시키는 방안을 제안한다. 가상예제를 활용하는 종래의 연구들은 주로 수치 속성 데이터를 대상으로 한 반면 본 연구에서는 범주속성 데이터에 대해서도 가상예제를 적용하여 효과를 확인하였다. 그리고 대상 도메인에 특화된 지식을 활용하여 특정 학습 알고리즘의 성능을 향상시키는 것을 목표로 한 기존 연구들과는 달리 본 연구에서는 도메인에 특화된 지식을 활용하는 대신 주어진 훈련 집합을 기반으로 만든 베이지안 네트워크로부터 가상예제를 생성하고, 그 예제가 네트워크의 조건부 우도를 증가시키는데 기여할 경우 유용한 것으로 선별한다. 이러한 생성 및 선별과정을 반복하여 적절한 크기의 가상예제 집합을 수집하여 사용한다. 범주 속성 데이터와 수치 속성을 포함한 데이터를 대상으로 한 실험 결과, 여러 가지 학습 모델의 성능이 향상됨을 확인하였다.
This paper presents a method of using virtual examples to improve the classification accuracy for data with nominal attributes. Most of the previous researches on virtual examples focused on data with numeric attributes, and they used domain-specific knowledge to generate useful virtual examples for a particularly targeted learning algorithm. Instead of using domain-specific knowledge, our method samples virtual examples from a naive Bayesian network constructed from the given training set. A sampled example is considered useful if it contributes to the increment of the network's conditional likelihood when added to the training set. A set of useful virtual examples can be collected by repeating this process of sampling followed by evaluation. Experiments have shown that the virtual examples collected this way.can help various learning algorithms to derive classifiers of improved accuracy.
In this paper, we propose an effective method for recognizing daily human activities from a stream of three dimensional body poses, which can be obtained by using Kinect-like RGB-D sensors. The body pose data provided by Kinect SDK or OpenNI may suffer from both the view variance problem and the scale variance problem, since they are represented in the 3D Cartesian coordinate system, the origin of which is located on the center of Kinect. In order to resolve the problem and get the view-invariant and scale-invariant features, we transform the pose data into the spherical coordinate system of which the origin is placed on the center of the subject's hip, and then perform on them the scale normalization using the length of the subject's arm. In order to represent effectively complex internal structures of high-level daily activities, we utilize Hidden state Conditional Random Field (HCRF), which is one of probabilistic graphical models. Through various experiments using two different datasets, KAD-70 and CAD-60, we showed the high performance of our method and the implementation system.
This paper suggests a conditional simulation framework based on multiple data transformations for geostatistical simulation of compositional data. First, log-ratio transformation is applied to original compositional data in order to apply conventional statistical methodologies. As for the next transformations that follow, minimum/maximum autocorrelation factors (MAF) and indicator transformations are sequentially applied. MAF transformation is applied to generate independent new variables and as a result, an independent simulation of individual variables can be applied. Indicator transformation is also applied to non-parametric conditional cumulative distribution function modeling of variables that do not follow multi-Gaussian random function models. Finally, inverse transformations are applied in the reverse order of those transformations that are applied. A case study with surface sediment compositions in tidal flats is carried out to illustrate the applicability of the presented simulation framework. All simulation results satisfied the constraints of compositional data and reproduced well the statistical characteristics of the sample data. Through surface sediment classification based on multiple simulation results of compositions, the probabilistic evaluation of classification results was possible, an evaluation unavailable in a conventional kriging approach. Therefore, it is expected that the presented simulation framework can be effectively applied to geostatistical simulation of various compositional data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.