• Title/Summary/Keyword: 조건부 분포

Search Result 138, Processing Time 0.034 seconds

Multivariate quantile regression tree (다변량 분위수 회귀나무 모형에 대한 연구)

  • Kim, Jaeoh;Cho, HyungJun;Bang, Sungwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.533-545
    • /
    • 2017
  • Quantile regression models provide a variety of useful statistical information by estimating the conditional quantile function of the response variable. However, the traditional linear quantile regression model can lead to the distorted and incorrect results when analysing real data having a nonlinear relationship between the explanatory variables and the response variables. Furthermore, as the complexity of the data increases, it is required to analyse multiple response variables simultaneously with more sophisticated interpretations. For such reasons, we propose a multivariate quantile regression tree model. In this paper, a new split variable selection algorithm is suggested for a multivariate regression tree model. This algorithm can select the split variable more accurately than the previous method without significant selection bias. We investigate the performance of our proposed method with both simulation and real data studies.

Analysis of soil moisture and drought in agricultural lands based on Terra MODIS using smart farm map and soil physical properties (스마트팜맵과 토양물리특성을 활용한 Terra MODIS 기반의 농지 토양수분 및 가뭄 현황 분석)

  • Jeehun Chung;Yonggwan Lee;Chan Kang;Jonghan Bang;Seongjoon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.375-375
    • /
    • 2023
  • 본 연구는 농지를 대상으로 토양수분 및 가뭄 현황을 분석하는 데 그 목적이 있다. 토양수분을 파악하기 위해 Terra MODIS(Moderate Resolution Imaging Spectroradiometer) 위성영상기반의 토양수분 산정모형을 개발하였다. 해당 모형은 MODIS LST(Land Surface Temperature) 및 NDVI(Normalized Difference Deficit Index)를 기반으로 SCS-CN(Soil Conservation Service-Curve Number) 방법에서 착안한 수문학적 개념 5일 선행강우 및 무강우일수를 입력자료로 하며, 토양 종류 및 계절에 따른 토양수분의 특성을 고려하였다. 모형의 개발을 위해 MODIS LST 및 NDVI 영상을 2013년부터 2022년까지 각각 일별 및 16일 단위로 구축하였으며, 동 기간에 대해 전국 88개소의 기상청 종관기상관측소의 강수량 및 LST 자료를 수집하였다. MODIS LST는 실측 LST 자료를 활용해 조건부합성기법을 적용하여 상세화하였고, 수집된 강수량자료는 역거리가중법을 활용해 공간 보간을 수행하였다. 토양특성의 구분은 농촌진흥청에서 정밀토양도를 수집하여 활용하였다. 공간 분포된 토양수분에서 농지에 해당하는 토양수분을 추출하기 위해 스마트팜맵을 구축하고, 농지 속성에 해당하는 위치 정보를 조회 후 이를 시군구별로 평균하여 일별 평균 토양수분값을 산정하였다. 토양수분 기반의 가뭄 현황 분석을 위해 구축된 정밀토양도에서 작물 생장과 관련된 영구위조점 및 포장용수량을 활용해 5단계(정상, 관심, 주의, 경계, 심각)의 가뭄 위험도를 산정하였으며, 실제 가뭄 현황과의 비교를 통해 토양수분기반의 가뭄 위험도의 실효성을 검증하고자 한다.

  • PDF

Development of radar rainfall estimation technique considering the elevation effect for hydropower dam operation (발전용 댐 운영을 위한 고도영향을 고려한 레이더 정량적 강우 추정 기술 개발)

  • Yoon, Seong Sim;Shin, Hongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.69-69
    • /
    • 2020
  • 수자원 확보 및 홍수 대응을 위해서는 정확한 강우정보를 바탕으로 한 효율적인 댐 운영이 필요하다. 그러나 댐이 위치한 지역은 산지지역으로 강우관측소 밀도의 지역적인 편차로 인해 지상 관측 강우자료 활용 시 강우 정보의 정확도 확보에 한계가 있다. 또한, 강우의 시·공간적 변동성 심화로 기존의 강우계만으로는 정확한 강우량 추정이 어려워 이를 홍수기 댐 운영의 기초정보로 활용 시 합리적 댐 운영에 한계가 있다. 댐 운영 시 강우 관측정보는 댐 유입량 산정을 위한 강우-유출해석 모형의 입력 자료로 활용되기 때문에 강우량 자료의 정확도 확보가 무엇보다 중요하나, 현재 댐 운영에 필요한 강우 관측정보로는 지상우량계 자료가 주로 활용되고 있어 이를 보완하고자 일반적으로 강우의 공간분포를 관측할 수 있는 고해상도 레이더 강우 정보가 활용되고 있다. 본 연구에서는 전력생산(발전) 및 용수공급, 홍수조절 기능을 고려하여 운영되고 있는 한국수력원자력(주)의 수력발전용댐(팔당, 의암, 춘천, 화천, 청평, 도암, 괴산, 섬진강, 보성강댐)에 활용할 수 있도록 환경부 합성레이더 자료를 바탕으로 레이더 강우정보를 산출하고, 레이더 강우의 정확도 향상을 위해 고도영향을 고려한 레이더 강우 보정기술을 개발하고자 한다. 적용한 기법은 강우장의 공간적 구조는 레이더 자료로 획득하고, 강우량은 강우계 관측정보를 합성하는 조건부합성기법을 기본으로 하며, 고도 영향을 고려할 수 있도록 강우분포장 생성 시 주변수를 강우로, 이차변수를 고도로 정의한 표준화된 정규공동크리깅을 활용한 기법이다. 본 연구를 통해 산출된 레이더 강우를 댐 유입 측면에서 기존의 보정기법과 비교하여 정확도를 검토하고, 댐 운영에 활용할 수 있도록 유역평균강우량 정보를 산출하고자 한다.

  • PDF

Derived I-D-F Curve in Seoul Using Bivariate Precipitation Frequency Analysis (이변량 강우 빈도해석을 이용한 서울지역 I-D-F 곡선 유도)

  • Kwon, Young-Moon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.155-162
    • /
    • 2009
  • Univariate frequency analyses are widely used in practical hydrologic design. However, a storm event is usually characterized by amount, intensity, and duration of the storm. To fully understand these characteristics and to use them appropriately in hydrologic design, a multivariate statistical approach is necessary. This study applied a Gumbel mixed model to a bivariate storm frequency analysis using hourly rainfall data collected for 46 years at the Seoul rainfall gauge station in Korea. This study estimated bivariate return periods of a storm such as joint return periods and conditional return periods based on the estimation of joint cumulative distribution functions of storm characteristics. These information on statistical behaviors of a storm can be of great usefulness in the analysis and assessment of the risk associated with hydrologic design problems.

Analysis of Generating Mechanism of Secondary Flows in Turbulent Open-Channel Flows using DNS Data (DNS 자료를 이용한 개수로에서 이차흐름의 생성메커니즘 분석)

  • Joung, Younghoon;Choi, Sung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.139-144
    • /
    • 2006
  • Using DNS data for turbulent flows in an open-channel with sidewalls, the mechanisms by which secondary flows are generated and by which Reynolds shear stresses are created, are demonstrated. Near the sidewall, secondary flows invading towards the sidewall are observed in the regions of both lower and upper corners, while secondary flows ejecting from the sidewall towards the center of the channel are created elsewhere. The distributions of Reynolds shear stresses near the sidewall are analyzed, connecting their productions with coherent structures. A quadrant analysis shows that sweeps are dominant in two corner regions where secondary flows invading towards the sidewall are generated, but that ejections are dominant in the region where secondary flows ejecting towards the center of the channel are created. Also, conditional quadrant analyses reveal that the productions of Reynolds shear stresses and the patterns of secondary flows are determined by the directional tendencies of coherent structures.

Estimation of citizens' Willing To Pay for water quality improvement on urban rivers (도시하천 수질 개선을 위한 도시민의 지불의사 추정)

  • Kang, Ji Yoon;Kim, Keewook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.463-463
    • /
    • 2022
  • 도시하천은 급속한 경제성장과 개발 등 여건변화에 따라 크게 변화되어왔다. 이에 하천은 본연의 모습과 가치를 잃고 인공적인 모습으로 변해 하천의 주요 기능인 자정작용, 생태계 건강성 유지 등의 기능을 잃고 도시 활동에 따른 오염물질에 노출되어가고 있는 실정이다. 이로 인한 부정적인 영향으로 도시민의 삶의 질과 만족도 또한 하락되고 있다. 본 연구에서는 부산의 대표하천인 수영강을 대상으로 도시하천 수질 개선을 위한 도시민의 지불의사를 추정하였다. 비시장가치를 추정하기 위해 조건부가치측정법(CVM, Contingent Valuation Method)을 적용하여 수질개선에 따른 지불의사(WTP, Willingness To Pay)를 파악하고 경제적 가치를 추정하였다. 가상시나리오는 EPA, water quality ladder의 개념을 이용하여 현재 수영강 수질이 오염된 물(4등급)이라고 가상시장을 설정하고 낚시가 가능한 수준(2등급)까지 개선을 시키고자 할 때의 지불의사를 물었다. 이때 지불수단은 기부금의 형태로 연 1회 향후 5년간 지불기간을 설정하였다. WTP 모형추정은 KDI에서 제시하고 있는 로지스틱분포 함수와 스파이크 모형을 사용하여 WTP를 추정하였다. 스파이크 모형의 추정결과 평균 지불의사액은 12,255원으로 부산광역시 전체 가구 수인 1,392,291가구(2019년)에 적용할 경우 향후 5년간 연 170억 원의 재원을 확보할 수 있는 것으로 나타났다. 지불의사 추정결과 수영강 인접 지역주민의 지불의사가 높게 추정되었고, 부산시민이 수영강을 자연과 생태보전 기능하천으로 인지하고 있음(56.5%)을 고려 할 때, 하천환경개선을 통한 지불의사의 상승은 도시하천 가치 향상이 될 수 있을 것으로 판단된다. 또한 도시민의 기대수준 충족과 더불어 도시하천 가치상승을 위한 부족한 재원까지도 조달 할 수 있는 방안의 기초를 마련 할 수 있을 것이라 판단된다.

  • PDF

Yongdam Dam Watershed Flood Simulation Using GPM Satellite Data and KIMSTORM2 Distributed Storm Runoff Model (GPM위성 강우자료와 KIMSTORM2 분포형 유출모형을 이용한 용담댐 유역 홍수모의)

  • KIM, Se-Hoon;KIM, Jin-Uk;CHUNG, Jee-Hun;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.39-58
    • /
    • 2019
  • This study performed the dam watershed storm runoff modeling using GPM(Global Precipitation Measurement) satellite rain and KIMSTORM2(KIneMatic wave STOrm Runoff Model 2) distributed model. For YongdamDam watershed(930㎢), three heavy rain events of 25th August 2014, 11th September 2017, and 26th June 2018 were selected and tested for 4 cases of spatial rainfalls such as (a) Kriging interpolated data using ground observed data at 7 stations, (b) original GPM data, (c) GPM corrected by CM(Conditional Merging), and GPM corrected by GDA(Geographical Differential Analysis). For the 4 kinds of data(Kriging, GPM, CM-GPM, and GDA-GPM), the KIMSTORM2 was calibrated respectively using the observed flood discharges at 3 water level gauge stations(Cheoncheon, Donghyang, and Yongdam) with parameters of initial soil moisture contents, stream Manning's roughness coefficient, and effective hydraulic conductivity. The total average Nash-Sutcliffe efficiency(NSE) for the 3 events and 3 stations was 0.94, 0.90, 0.94, and 0.94, determination coefficient(R2) was 0.96, 0.92, 0.97 and 0.96, the volume conservation index(VCI) was 1.03, 1.01, 1.03 and 1.02 for Kriging, GPM, CM-GPM, and GDA-GPM applications respectively. The CM-GPM and GDA-GPM showed better results than the original GPM application for peak runoff and runoff volume simulations, and they improved NSE, R2, and VCI results.

Spatial-Temporal Interpolation of Rainfall Using Rain Gauge and Radar (강우계와 레이더를 이용한 강우의 시공간적인 활용)

  • Hong, Seung-Jin;Kim, Byung-Sik;Hahm, Chang-Hahk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.37-48
    • /
    • 2010
  • The purpose of this paper is to evaluate how the rainfall field effect on a runoff simulation using grid radar rainfall data and ground gauge rainfall. The Gwangdeoksan radar and ground-gauge rainfall data were used to estimate a spatial rainfall field, and a hydrologic model was used to evaluate whether the rainfall fields created by each method reproduced a realistically valid spatial and temporal distribution. Pilot basin in this paper was the Naerin stream located in Inje-gun, Gangwondo, 250m grid scale digital elevation data, land cover maps, and soil maps were used to estimate geological parameters for the hydrologic model. For the rainfall input data, quantitative precipitation estimation(QPE), adjusted radar rainfall, and gauge rainfall was used, and then compared with the observed runoff by inputting it into a $Vflo^{TM}$ model. As a result of the simulation, the quantitative precipitation estimation and the ground rainfall were underestimated when compared to the observed runoff, while the adjusted radar rainfall showed a similar runoff simulation with the actual observed runoff. From these results, we suggested that when weather radars and ground rainfall data are combined, they have a greater hydrological usability as input data for a hydrological model than when just radar rainfall or ground rainfall is used separately.

Frequency analysis for annual maximum of daily snow accumulations using conditional joint probability distribution (적설 자료의 빈도해석을 위한 확률밀도함수 개선 연구)

  • Park, Heeseong;Chung, Gunhui
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.627-635
    • /
    • 2019
  • In Korea, snow damage has been happened in the region with no snowfalls in history. Also, casual damage was caused by heavy snow. Therefore, policy about the Natural Disaster Reduction Comprehensive Plan has been changed to include the mitigation measures of snow damage. However, since heavy snow damage was not frequent, studies on snowfall have not been conducted in different points. The characteristics of snow data commonly are not same to the rainfall data. For example, some parts of the southern coastal areas are snowless during the year, so there is often no values or zero values among the annual maximum daily snow accumulation. The characteristics of this type of data is similar to the censored data. Indeed, Busan observation sites have more than 36% of no data or zero data. Despite of the different characteristics, the frequency analysis for snow data has been implemented according to the procedures for rainfall data. The frequency analysis could be implemented in both way to include the zero data or exclude the zero data. The fitness of both results would not be high enough to represent the real data shape. Therefore, in this study, a methodology for selecting a probability density function was suggested considering the characteristics of snow data in Korea. A method to select probability density function using conditional joint probability distribution was proposed. As a result, fitness from the proposed method was higher than the conventional methods. This shows that the conventional methods (includes 0 or excludes 0) overestimated snow depth. The results of this study can affect the design standards of buildings and also contribute to the establishment of measures to reduce snow damage.

Seasonal Relationship between El Nino-Southern Oscillation and Hydrologic Variables in Korea (ENSO와 한국의 수문변량들간의 계절적 관계 분석)

  • Chu, Hyun-Jae;Kim, Tae-Woong;Lee, Jong-Kyu;Lee, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.299-311
    • /
    • 2007
  • Climatic abnormal phenomena involving El Nino and La Nina have been frequently reported in recent decades. The interannual climate variability represented by El Nino-Southern Oscillation (ENSO) is sometimes investigated to account for the climatic abnormal phenomena around the world. Although many hydroclimatologists have studied the impact of ENSO on regional precipitation and streamflow, however, there are still many difficulties in finding the dominant causal relationship between them. This relationship is very useful in making hydrological forecasting models for water resources management. In this study, the seasonal relationships between ENSO and hydrologic variables were investigated in Korea. As an ENSO indicator, Southern Oscillation Index (SOI) was used. Monthly precipitation, monthly mean temperature, and monthly dam inflow data were used after being transformed to the standardized normal index. Seasonal relationships between ENSO and hydrologic variables were investigated based on the exceedance probability and distribution of hydrologic variables conditioned on the ENSO episode. The results from the analysis of this study showed that the warm ENSO episode affects increases in precipitation and temperature, and the cold ENSO episode is related with decreases in precipitation and temperature in Korea. However, in some regions, the local relationships do not correspond with the general seasonal relationship.