• Title/Summary/Keyword: 조강콘크리트

Search Result 102, Processing Time 0.017 seconds

Engineering Characteristics of Blast Furnace Slag Cement Mortar Using Chlorine Bypass System-Dust as Alkali Activator (Chlorine Bypass System-Dust를 알칼리 자극제로 사용한 고로슬래그 시멘트 모르타르의 공학적 특성)

  • Han, Min-Cheol;Lee, Dong-Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.235-244
    • /
    • 2020
  • This study conducted a series of studies to offer a novel method of using CBS-dust that produced as by-product in the manufacture of cement. Four different contents of BS and CBS-dust were adopted for test parameters of this study. Mortar with 50% of W/B was fabricated. First, in the case of the fresh mortar, the flow decreased as the CBS-dust replacement rate increased, but the binder composition ratio BS 45% and 65% showed higher fl ow than Pl ain when repl acing CBS-dust 5%. In the case of air content, overall, the tendency was proportional to the CBS-dust replacement rate, and chloride tended to exceed the reference value at all replacement rates except for the CBS-dust 0% replacement. The compressive strength of the hardened mortar shows the resul t that the strength is improved when the CBS-dust is repl aced by 5% to 10%, and the CSH gel and structure formation is confirmed by microstructure analysis through the hydration reaction when the CBS-dust is replaced. Therefore, for a given condition CBS-dust is used as a early-strength admixture in a concrete secondary product that uses a large amount of admixture without reinforcing bars it can be an effective method for enhancing the strength of concrete as an alkali activator.

Response of Vegetation to Shoreline Alternation in a Large Reservoir (대형 저수지에서 호안 정비에 대한 식생의 반응)

  • Chu, Yun Soo;Cho, Hyunsuk;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.143-151
    • /
    • 2016
  • Shoreline armoring is a globally used engineering strategy to prevent shoreline erosion along stream, lake and reservoir coastlines. Armoring alters the land-water interface and has the potential to affect shoreline vegetation by changing nearshore geomorphology, hydrology, sediment composition and water quality. We quantified the effects of the artificial disturbances and alternation of the land-water interface on the community structure and distribution of shoreline vegetation in a large reservoir, Uiam Reservoir, Korea. More than 60% of shorelines were disturbed by armoring with retaining wall of concrete block, riprap and gabion in the Uiam Reservoir. The results of detrended correspondence analysis showed that the vegetation structures of the shoreline modified by armoring changed from hydrophyte-dominated to hygrophyte-dominated ecosystems. The shoreline armoring caused the disruption of gradual continuity in the water-land interface and the biological invasion by alien plants. The changes in distribution area of shoreline vegetation showed that the area of hydrophytic vegetation decreased and that of hygrophytic vegetation increased from 2010 to 2013. In conclusion, the human disturbance such as armoring, road construction, recreation etc. could lead to terrestrialization, the loss of transverse continuity and biological invasion in the shoreline vegetation of the Reservoir Uiam. Our findings suggest that redesigning or removing shoreline armoring structures may benefit nearshore hydrophytic vegetation for the conservation of novel shoreline ecosystems.