• Title/Summary/Keyword: 젤

Search Result 525, Processing Time 0.027 seconds

Purification of Recombinant CTP-Conjugated Human prostatic acid phosphatase for activation of Dendritic Cell (수지상세포 활성화를 위한 세포투과 펩타이드가 결합된 재조합 전립성 산성 인산분해효소의 정제)

  • Yi, Ki-Wan;Ryu, Kang
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.80-88
    • /
    • 2009
  • Human prostatic acid phosphatase (PAP), with comprehensive homology to glandular kallikrein, are representative serum biomarkers of prostate cancer. Dendritic cell (DC), which is the potent antigen-presenting cells(APC) in the immune system, can induce strong T cell responses against viruses, microbial pathogens, and tumors. Therefore, the immunization using DC loaded with tumor-associated antigens is a powerful method for inducing anti-tumor immunity. The CTP (Cytoplasmic Transduction Peptide) technology developed by Creagene which can transport attached bio-polymers like nucleic acids or proteins into the cell with high permeation efficiency. As the active forms of PAP can mediate apoptotic processing, we used multimer forms of PAP as an inactive form for antigen pulsing of DCs. In this study, multimeric forms of CTP-rhPAP was obtained according to the advanced purification process and subsequently confirmed by gel filtration chromatography, western blot and Dynamic Light Scattering. Therefore, CTP-conjugated PA multimers transduced into the cytoplasm were efficiently presented on the cell surface without any harm effect on cells via MHC class I molecules and result in induction of a large number of effector cell.

Characteristics of Lithium Metal Secondary Battery Using PAN Gel-electrolyte Mixed with TiO2 Ceramic Filler (TiO2 Ceramic Filler가 혼합된 젤상의 PAN 고분자 전해질을 이용한 리튬금속 이차전지의 특성)

  • Lim, Hyo-Sung;Kim, Hyung-Sun;Cho, Byung-Won;Lee, Tae-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.106-110
    • /
    • 2002
  • Gel-type polyacrylonitrile(PAN) polymer electrolytes have been prepared using ethylene carbonate(EC), propylene carbonate(PC) and dimethyl carbonate(DMC) plasticizer, $LiPF_6$ salt and $TiO_2$ ceramic filler. Electrochemical properties, such as electrochemical stability, ionic conductivity and compatibility with lithium metal and mechanical properly of polymer electrolytes were investigated. Charge/discharge performance of lithium secondary battery using these polymer electrolytes were investigated. The maximum load that the polymer electrolyte resists increased about two times as a result of adding $TiO_2$ in the polymer electrolyte containing EC and PC. Polymer electrolyte containing EC, PC and $TiO_2$ also showed ionic conductivity of $2\times10^{-3} S/cm$ at room temperature and electrochemical stability window up to 와 4.5V. Polymer electrolyte containing EC, PC, and $TiO_2$ showed the most stable interfacial resistance of $130\Omega$ during 20 days in the impedance spectra of the cells which were constructed by lithium metals as electrodes. Lithium metal secondary battery which employed $LiCoO_2$ cathode, lithium metal anode and $TiO_2$-dispersed polymer electrolyte showed $90\%$ of charge/discharge efficiency at the 1C rate of discharge.

Purification and Biochemical Characteristics of a 45 kDa Fibrinolytic Enzyme from a Halophile (호염성균 유래 45 kDa 혈전용해효소의 순수분리와 생화학적 특성)

  • Kim, Do-Hyoung;Park, Jeong-Uck;Seo, Min-Jeong;Kim, Min-Jeong;Lee, Hye-Hyeon;Choi, Yung-Hyun;Joo, Woo-Hong;Jeong, Yong-Kee
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.183-189
    • /
    • 2010
  • A fibrinolytic enzyme producing Bacillus sp. J-19 was isolated from the popular Korean seasoning, pickled anchovy. The fibrinolytic enzyme was purified to homogeneity by chromatographic methods including ethanol precipitation and gel-filtration using Sephadex G-50. Compared to the crude enzyme extract, the specific activity of the enzyme increased 1021-fold with a recovery of 23%. The purified enzyme was estimated to be approximately 45 kDa by SDS-PAGE. Especially, the amidolytic activity in the presence of the synthetic substrate for serine protease (H-D-Ile-Pro-Arg-pNA, S-2288) represented approximately 17 U/mg. In addition, more than the 60% activity of the 45 kDa fibrinolytic activity was maintained in the presence of up to 30% (w/v) sodium chloride. These findings could provide a unique fibrinolytic enzyme, leading to a potential thrombolytic agent.

Proteome Analysis of Chicken Embryonic Gonads: Identification of Major Proteins from Cultured Gonadal Primordial Germ Cells

  • Lee, Sang-In;Han, Beom-Ku;Park, Sang-Hyun;Kim, Tae-Min;Sin, Sang-Soo;Lee, Young-Mok;Kim, Hee-Bal;Lim, Jeong-Mook;Han, Jae-Yong
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2005.11a
    • /
    • pp.66-67
    • /
    • 2005
  • The domestic chicken (Gallus gallus) is an important model for research in developmental biology because its embryonic development occurs in ovo. To examine the mechanism of embryonic germ cell development, we constructed proteome map of gonadal primordial germ cells (gPGC) from chicken embryonic gonads. Embryonic gonads were collected from 500 embryos at 6 day of incubation, and the gPGC were cultured in vitro until colony formed. After 7-10 days in cultured gPGC colonies were separated from gonadal stroma cells (GSCs). Soluble extracts of cultured gPGCs were then fractionated by two-dimensional gel electrophoresis (pH 4-7). A number of protein spots, including those that displayed significant expression levels, were then identified by use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry and LC-MS/MS. Of the 89 gPGC spots examined, 50 yielded mass spectra that matched avian proteins found in on-line databases. Proteome map of thistype will serve as an important reference for germ cell biology and transgenic research.

  • PDF

Creating Electrochemical Sensors Utilizing Ion Transfer Reactions Across Micro-liquid/liquid Interfaces (마이크로-액체/액체 계면에서의 이온 이동 반응을 이용한 전기화학 센서 개발)

  • Kim, Hye Rim;Baek, Seung Hee;Jin, Hye
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.443-455
    • /
    • 2013
  • Electrochemical studies on charge transfer reactions across the interface between two immiscible electrolyte solutions (ITIES) have greatly attracted researcher's attentions due to their wide applicability in research fields such as ion sensing and biosensing, modeling of biomembranes, pharmacokinetics, phase-transfer catalysis, fuel generation and solar energy conversion. In particular, there have been extensive efforts made on developing sensing platforms for ionic species and biomolecules via gelifying one of the liquid phases to improve mechanical stability in addition to creating microscale interfaces to reduce ohmic loss. In this review, we will mainly discuss on the basic principles, applications and future aspects of various sensing platforms utilizing ion transfer reactions across the ITIES. The ITIES is classified into four types : (i) a conventional liquid/liquid interface, (ii) a micropipette supported liquid/liquid interface, (iii) a single microhole or an array of microholes supported liquid/ liquid interface on a thin polymer film, and (iv) a microhole array liquid/liquid interface on a silicon membrane. Research efforts on developing ion selective sensors for water pollutants as well as biomolecule sensors will be highlighted based on the use of direct and assisted ion transfer reactions across these different ITIES configurations.

Electrochemical Study on Transfer Reaction of Ionizable Cefotiam across a Water/1,2-dichloroethane Interface and Drug Sensing Applications (물/1,2-Dichloroethane 계면에서 Cefotiam 약물 이온의 전이 반응 연구 및 약물 센서에 응용)

  • Liu, XiaoYun;Jeshycka, Shinta;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.581-588
    • /
    • 2018
  • In this article, electrochemical investigation of the transfer reaction of ionizable cefotiam (CTM), an antibiotic molecule across a polarized water/1,2-dichloroethane (water/1,2-DCE) interface was studied. Ion partition diagram providing the preferred charged form of CTM in either water or 1,2-DCE phase was established via the voltammetric evaluation of the transfer process of differently charged CTM species depending upon the pH variation of aqueous solutions. Thermodynamic information including the formal transfer potential and formal Gibbs transfer energy values in addition to important pharmacokinetics including partition coefficients of ionizable CTM were also evaluated. In particular, the current associated with the transfer of CTM present at pH 3.0 aqueous solution proportionally increased with respect to the CTM concentration which was further used for developing CTM sensitive ion sensor. In order to improve the portability and convenient usage, a single microhole interface fabricated in a supportive polyethylene terephthalate film was used of which hole was filled with a polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel replacing 1,2-DCE, a toxic organic solvent. A dynamic range of $1-10{\mu}M$ CTM was obtained.

Heterologous Expression of Human Ferritin H-chain and L-chain Genes in Saccharomyces cerevisiae (재조합 효모를 이용한 사람 H-Chain 교 L-Chain Ferritin의 생산)

  • 서향임;전은순;정윤조;김경숙
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.162-168
    • /
    • 2002
  • Human ferritin H- and L-chain genes(hfH and hfL) were cloned into the yeast shuttle vector YEp352 with various promoters, and the vectors constructed were used to transform Saccharomyces cerevisiae 2805. Three different promoters fused to hfH and hfL were used: galactokinase 1 (GAL1) promoter, glyceraldehyde-3-phosphate dehydrogenase(GPD) promoter and alcohol dehydrogenase 1(ADH1 ) promoter. SDS-polyacrylamide gel electrophoresis and Western blotting analyses displayed expression of the introduced hfH and hfL. In the production of both ferritin H and L subunits GAL1 promoter was more effective than GPD promoter or ADH1 promoter. Ferritin H and L subunits produced in S. cerevisiae were spontaneously assembled into its holoproteins as proven on native polyacrylamide gels. Both recombinant H and L-chain ferritins were catalytically active in forming iron core. When the cells were cultured in the medium containing 10 mM ferric citrate, the cell-associated concentration of iron was 174.9 $\mu\textrm{g}$ Per gram(dry cell weight) for the recombinant yeast YG-L and 148.8 $\mu\textrm{g}$ Per gram(dry cell weight) for the recombinant yeast YG-L but was 49.4 $\mu\textrm{g}$ Per gram(dry cell weight) in the wild type, indicating that the iron contents of yeast is improved by heterologous expression of human ferritin H-chain or L-chain genes.

Preparation and Characterization of Acrylic Bone Cement with Poly(methyl methacrylate)/Montmorillonte Nanocomposite Beads (폴리(메틸 메타크릴레이트)/몬모릴로나이트 나노복합체를 이용한 아크릴계 골시멘트의 제조 및 특성)

  • Lim Jin Sook;Son Eun Hee;Hwang Sung-Joo;Kim Sung Soo
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.350-356
    • /
    • 2005
  • Poly(methyl methauylate)/montmorillonite nanocomposites were incorporated into acrylic bone cement in order to improve the mechanical properties and reduce the exotherm of acrylic bone cement. The nanocomposites were prepared using a suspension polymerization and characterized by scanning electron microscopy, X-ray diffraction, trans-mission electron microscopy, gel permeation chromatography, particle size analyzer and electron dispersive spectroscopy. The acrylic bone cements with poly (methyl methacrylate)/nanocomposite s were prepared and their thermal and mechanical properties were characterized. The prepared polymeric beads were composed of polymer-intercalated nanocomposites with partially exfoliated MMT layers, and the mean diameter of them was $50\~60$ fm with the spherical shape. The maximum setting temperature of the acrylic bone cements decreased from 98 to $81\~87^{circ}C$. The mechanical strengths and moduli of the acrylic bone cement with 0.1 $wt\%$ MMT were increased. compared to that without MMT. However, the mechanical properties were generally decreased with increasing incorporated MMT amounts. It is presumably due to the bubbles in nanocomposite beads generated during polymerization.

Properties of Poly(oxymethylene)/Modified Poly[styrene-b-(ethylene-1-butene)-b-styrene] Triblock Copolymer Blends (폴리(옥시메틸렌)/개질 폴리[스티렌-b-(에틸렌-1-부텐)-b-스티렌] 삼블록 공중합체 블렌드의 물성)

  • Jeon, Hyun-Uk;Kim, Seung-Woo;Kim, Gue-Hyun;Kim, Il;Ha, Chang-Sik
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.162-169
    • /
    • 2004
  • Poly[styrene-b-(ethylene-1-butene)-b-styrene] triblock copolymer (SEBS) was functionalized with 0 to 3.0 phr maleic anhydride and the amount of dicumyl peroxide used as an initiator was varied from 0 to 0.3phr. The gel content of the modified SEBS was determined by xylene extraction and poly(oxymethylene) was blended with the modified SEBS. The impact, tensile, flexural strength and morphologies of the blends were investigated. The Izod impact strength of poly(oxymethylene) was improved through its blending with modified SEBS. However, the Izod impact strength of poly(oxymethylene)/modified SEBS blend decreased above 5% modified SEBS content. Regarding the effect of dicumyl peroxide content on the Izod impact strength, the blend had a maximum Izod impact strength when poly(oxymethylene) was blended with modified SEBS prepared with 0.1 phr dicumyl peroxide. It was also confirmed by SEM micrographs that the average particle size of modified SEBS in poly(oxymethylene)/modified SEBS blends was smaller than that of SEBS in poly(oxymethylene)/SEBS blends.

Production and Characterization of Raw Starch Hydrolyzing Enzyme from Bacteria (세균에 의한 생전분 분해효소의 생성 및 특성)

  • Park, In-Shik;Nam, In;Kho, Sun-Ok;Kim, Gi-Nahm;Suh, Kyung-Soon
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.244-250
    • /
    • 1990
  • A bacterium capable of hydrotyzing raw starch was isolated from soil, which was identified as a strain of Bacillue. The effects of culture conditions and medium compositions on the enzyme production were investigated. Among tested carbon sources, soluble starch and wheat starch were most effective for the production of the enzyme, and the level of concentration for the optimal enzyme production was 0.5%. For nitrogen sources, polypeptone was best for the enzyme production, with the level of 0.5%. The enzyme was maximally produced by cultivating the organism at medium of initial pH 6.5, and temperature of $35^{\circ}C$. The enzyme was partially purified by Sepharose CL-6B gel filtration and DEAESephacel ion-exchange chromatography. The optimal pH and temperature for the enzyme reaction were 6.5 and $70^{\circ}C$, respectively. The enzyme most stable at pH 8.0, and temperature up to $60^{\circ}C$. In kinetic studies, the k, values for corn, wheat, rice and potato starch were 1.7, 1.4,2.5 and 1.090, respectively.

  • PDF