• 제목/요약/키워드: 제한된 볼츠만 기계

검색결과 3건 처리시간 0.016초

Collaborative Filtering based Recommender System using Restricted Boltzmann Machines

  • Lee, Soojung
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권9호
    • /
    • pp.101-108
    • /
    • 2020
  • 추천 시스템은 전자 상거래 시에 고객들의 상품 선택의 편의를 제공하므로 반드시 구비되어야 할 기능이다. 협력 필터링은 다른 사용자들이 선호하였던 상품이나 현 사용자가 과거 선호하였던 상품들을 위주로 추천 리스트를 제공하는 기법으로서, 가장 널리 활용되는 대표적 기법이다. 최근 딥러닝 인공지능 기술을 활용하여 추천 시스템의 성능 향상을 달성하는 연구가 활발히 진행되고 있다. 본 연구에서는 사용자가 부여한 평가등급만을 이용하여 딥러닝 기술의 일종인 제한 볼츠만 기계 학습을 통해 협력 필터링 기반의 추천 시스템을 개발한다. 또한 학습의 효율성과 성능을 위하여 학습 파라미터 변경 알고리즘을 제시한다. 제안 시스템의 성능 평가를 위하여 실험 분석을 통해 기존의 다양한 전통적 협력 필터링 기법들과 비교 분석을 실시하였으며, 제안 알고리즘은 기본적인 제한 볼츠만 기계 모델보다 우수한 성능을 가져오는 것으로 확인되었다.

제한된 볼츠만 기계학습 알고리즘을 이용한 우리나라 지역사회 노인의 경도인지장애 예측모형 (Mild Cognitive Impairment Prediction Model of Elderly in Korea Using Restricted Boltzmann Machine)

  • 변해원
    • 융합정보논문지
    • /
    • 제9권8호
    • /
    • pp.248-253
    • /
    • 2019
  • 노인성 치매의 전 임상단계인 경도인지장애(MCI)를 조기 진단하고, 조기 개입한다면, 치매의 발병률을 줄일 수 있다. 본 연구는 우리나라 지역사회 노인의 MCI 예측 모형을 개발하고 노년기 인지장애의 예방을 위한 기초자료를 제공하였다. 연구대상은 2012년 Korean Longitudinal Survey of Aging(KLoSA)에 참여한 65세 이상 지역사회 노인 3,240명(남성 1,502명, 여성 1,738명)이다. 결과변수는 MCI유병으로 정의하였고, 설명변수는 성, 연령, 혼인상태, 교육수준, 소득수준, 흡연, 음주, 주1회 이상의 정기적인 운동, 월평균 사회활동 참여시간, 주관적 건강, 고혈압, 당뇨병을 포함하였다. 예측모형의 개발은 Restricted Boltzmann Machine(RBM) 인공신경망을 이용하였다. RMB 인공신경망을 이용하여 우리나라 지역사회 노인의 MCI 예측 모형을 구축한 결과, 유의미한 요인은 연령, 성별, 최종학력, 주관적 건강, 혼인상태, 소득수준, 흡연, 규칙적 운동이었다. 이 결과를 기초로 MCI 고위험군의 특성을 고려한 맞춤형 치매 예방 프로그램의 개발이 요구된다.

기계학습 및 딥러닝 기술동향

  • 문성은;장수범;이정혁;이종석
    • 정보와 통신
    • /
    • 제33권10호
    • /
    • pp.49-56
    • /
    • 2016
  • 본 논문에서는 패턴 인식 및 회귀 문제를 풀기 위해 쓰이는 기계학습에 대한 전반적인 이론과 설계방법에 대해 알아본다. 대표적인 기계학습 방법인 신경회로망과 기저벡터머신 등에 대해 소개하고 이러한 기계학습 모델을 선택하고 구축하는 데에 있어 고려해야 하는 문제점들에 대해 이야기 한다. 그리고 특징 추출 과정이 기계학습 모델의 성능에 어떻게 영향을 미치는지, 일반적으로 특징 추출을 위해 어떤 방법들이 사용되는 지에 대해 알아본다. 또한, 최근 새로운 패러다임으로 대두되고 있는 딥러닝에 대해 소개한다. 자가인코더, 제한볼츠만기계, 컨볼루션신경회로망, 회귀신경회로망과 같이 딥러닝 기술이 적용된 대표적인 신경망 구조에 대해 설명하고 기존의 기계학습 모델과 비교하여 딥러닝이 가지고 있는 특장점을 알아본다.