• 제목/요약/키워드: 제품 분류 자동화

검색결과 19건 처리시간 0.022초

기능성 화장품 마케팅의 소셜 빅데이터 분석 활용 : H사 사례를 중심으로 (Application of Social Big Data Analysis for CosMedical Cosmetics Marketing : H Company Case Study)

  • 황신해;구동영;김정군
    • 디지털융복합연구
    • /
    • 제17권7호
    • /
    • pp.35-41
    • /
    • 2019
  • 본 연구는 소셜 빅데이터 분석을 통해 튼살 기능성 화장품 시장과 고객 분석을 수행하고 중소화장품제조 기업의 마케팅 활용 후 시사점을 도출하기 위해 수행되었다. 20만개 이상의 네이버 블로그, 네이버 까페, 인스타그램, 네이버스토어 게시글을 대상으로 R을 활용한 빅데이터 분석을 수행하였다. 키워드 빈도분석, 연관관계 분석을 통해 고객 니즈와 경쟁사 포지셔닝을 이해하고 마케팅 전략 수립을 위한 시사점을 도출하였다. 분석 결과 튼살 완화와 함께 예방이 핵심 소구점으로 파악되었고 선물용 시장을 위한 제품 라인의 확장이 주요 시사점으로 나타났고 제품에 대해 상호 보완할 수 있는 제품과의 연관성이 높은 것으로 나타났다. 전통적인 마케팅 기법과 함께 사용 시 소셜 빅데이터 분석은 증거기반의 의사 결정과 기존에 파악하지 못했던 고객과 시장의 특성 도출에 유용함을 확인하였다. 향후 연구에서는 word2vec과 같은 자동화된 문장 분류를 통해 추가적인 마케팅 인사이트를 얻을 수 있을 것으로 판단된다.

웹 서비스 기반 e-엔지니어링 프레임워크의 신뢰성 향상을 위한 회복 기법 (The Recovery Techniques on the Web Services-based e-Engineering Framework for Reliability Improvement)

  • 김동욱;국승학;김현수;이재경
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권1호
    • /
    • pp.76-80
    • /
    • 2008
  • 제품 개발 기간을 단축하고 품질과 생산성을 향상시키기 위하여 설계/해석 프로세스의 자동화가 요구된다. 일반적으로 설계/해석 프로세스는 시간과 자원을 많이 필요로 하는 작업이기 때문에 분산 환경에서 다양한 엔지니어링 자원을 효과적으로 활용할 수 있어야 한다. 분산 환경에서의 유연한 엔지니어링 프로세스의 통합과 자동화를 가능하게 하기 위해 한국기계연구원에서는 SOA(Service Oriented Architecture)기반의 e-엔지니어링 프레임워크를 구축하였다. 본 논문에서는 한국기계연구원의 e-엔지니어링 프레임워크의 개념 및 구조를 설명한다. 또한 e-엔지니어링 프레임워크에서 발생할 수 있는 예외사항에 중점을 두고 이러한 예외사항에 대해서 엔지니어링 프로세스 측면과 태스크 측면으로 분류하여 장애진단 및 회복 기법을 제시한다.

라이너지 제지공장의 습부공정 모니터링 경험 (Wet-end Monitoring Experience in Liner Paper Mill)

  • 신종호;류정용;김용환;송봉근
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2001년도 추계학술발표논문집
    • /
    • pp.57-58
    • /
    • 2001
  • 용수 다소비 산업으로 분류되는 제지공업의 특성 상, 용수사용의 억제 및 용수의 무방류화에 대한 압력이 증가되고 있는 반면, 초지환경은 날로 열악해지고 있는 실정이다. 한 예로써, 용지의 재활용율 및 재사용 비율이 증가함에 따라 원료의 저급화가 심 각한 수준에 이르고 있으며, 이러한 초지환경의 변화는 각질화되고 극도로 미세화된 다량의 미세섬유 발생 및 잡고지로부터 유입되는 점착성 이물질과 무기 충진제의 도입 등을 유발함으로서 제품의 물리적 성질 저하, 탈수부하 증가로 인한 생산성 저하, 약품사용량 증가 등을 초래하여, 결과적으로는 폐수처리장의 부하를 증대시킴과 동시에 청수사용량 및 폐수방류량을 증가시키는 악순환을 되풀이하게 된다. 국내 제지산업이 국제적 경쟁력을 갖추기 위해서는 제품의 증대가 필수적이나, 원료와 설비의존도를 감안할 때, 제품특성과 공정 분을 결정하는 습부공정을 정확히 파악하여 최적 운전조건을 확립하는 것이 가장 경제적이고 용이한 방법일 뿐만 아니라 전체 제지공정의 정정화에도 기여할 수 있을 것으로 판단된다. 일정규모이상의 종이를 생산하는 제지공장은 거의 대부분 컴퓨터로 처리되는 온라인 공정조절 시스템(On-line process control system)을 구비하고 료의 도입에서부터 설비운전 및 제품의 기본적인 품질관리까지 실시간의 자동화되고 안정적인 운전과 관리시스템을 유지하고 있다. 그러나 전체 제지공정 중, 제품 물성과 운전조건의 대부분을 결정하는 습부공정만큼은 아직도 주기적인 분석이 행해지고 있지 않을 뿐만 아니라, 슬러리의 농도나 보류도 정도를 제이하면 분석항목 조차도 변변히 확립되어 있지 않을 실정이다. 이는 다량의 물 속에 존재하게 되는 용전물질(Dissolved solids, DS), 부유물질(Suspended solids, SS), 섬 유(Fibers), 무기 미 세분(Inorganic f fines), 그리고 투입되는 약품간에 발생하는 계면동전현상 및 이러한 현상과 최종 지제 품의 물성간의 상관관계에 대한 이해 정도나 경험 부족에서 기인하는 것으로 생각된다. 1 1983년 미국제지기술연합회(T APpI)의 제지용 첨가제 분과위원회(Papermaking A Additive Committee)에서는 습부공정의 적절한 조절을 위해 어떤 항목들이 필요하며 그 중요도는 어떠한가를 조사하였으며, 그 결과로 전하밀도, 제타전위, 보류도 및 여수 도, 무기 미세분 함량 등이 중요하다고 보고하였다. 그러나 지료의 전기적 특성을 실시 간으로 측정하는 기자재류가 최근에 이르러서야 도입되고 있는 실정이기 때문에 충분 한 현장적용 사례가 보고되지 못하고 있으며, 결과적으로 얻어진 정보와 최종 지제품의 물성 및 초지기 운전조건과의 상관관계를 확립하는 작업결과는 더욱 찾아보기 어렵다. 따라서, 본 연구에서는, 라이너지 제조공장의 습부공정에 투입되는 약품이 지료 의 전기적 성질, 즉 전하밀도와 제타전위에 미치는 영향을 모니터링함으로서 지료의 전기적 성질들과 습부 공정상태와의 상관관계를 살펴보고자 하였다. 본 연구는 다음과 같은 순서로 진행하였다.

  • PDF

Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구 (A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm)

  • 정예림;김지희;유형선
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.1-21
    • /
    • 2020
  • 인공지능 기술의 급속한 발전과 함께 빅데이터의 상당 부분을 차지하는 비정형 텍스트 데이터로부터 의미있는 정보를 추출하기 위한 다양한 연구들이 활발히 진행되고 있다. 비즈니스 인텔리전스 분야에서도 새로운 시장기회를 발굴하거나 기술사업화 주체의 합리적 의사결정을 돕기 위한 많은 연구들이 이뤄져 왔다. 본 연구에서는 기업의 성공적인 사업 추진을 위해 핵심적인 정보 중의 하나인 시장규모 정보를 도출함에 있어 기존에 제공되던 범위보다 세부적인 수준의 제품군별 시장규모 추정이 가능하고 자동화된 방법론을 제안하고자 한다. 이를 위해 신경망 기반의 시멘틱 단어 임베딩 모델인 Word2Vec 알고리즘을 적용하여 개별 기업의 생산제품에 대한 텍스트 데이터를 벡터 공간으로 임베딩하고, 제품명 간 코사인 거리(유사도)를 계산함으로써 특정한 제품명과 유사한 제품들을 추출한 뒤, 이들의 매출액 정보를 연산하여 자동으로 해당 제품군의 시장규모를 산출하는 알고리즘을 구현하였다. 실험 데이터로서 통계청의 경제총조사 마이크로데이터(약 34만 5천 건)를 이용하여 제품명 텍스트 데이터를 벡터화 하고, 한국표준산업분류 해설서의 산업분류 색인어를 기준으로 활용하여 코사인 거리 기반으로 유사한 제품명을 추출하였다. 이후 개별 기업의 제품 데이터에 연결된 매출액 정보를 기초로 추출된 제품들의 매출액을 합산함으로써 11,654개의 상세한 제품군별 시장규모를 추정하였다. 성능 검증을 위해 실제 집계된 통계청의 품목별 시장규모 수치와 비교한 결과 피어슨 상관계수가 0.513 수준으로 나타났다. 본 연구에서 제시한 모형은 의미 기반 임베딩 모델의 정확성 향상 및 제품군 추출 방식의 개선이 필요하나, 표본조사 또는 다수의 가정을 기반으로 하는 전통적인 시장규모 추정 방법의 한계를 뛰어넘어 텍스트 마이닝 및 기계학습 기법을 최초로 적용하여 시장규모 추정 방식을 지능화하였다는 점, 시장규모 산출범위를 사용 목적에 따라 쉽고 빠르게 조절할 수 있다는 점, 이를 통해 다양한 분야에서 수요가 높은 세부적인 제품군별 시장정보 도출이 가능하여 실무적인 활용성이 높다는 점에서 의의가 있다.

건표고 자동선별을 위한 시작시스템 개발 (Development of a Prototype Automatic Sorting System for Dried Oak Mushrooms)

  • 황헌;이충호
    • Journal of Biosystems Engineering
    • /
    • 제21권4호
    • /
    • pp.414-421
    • /
    • 1996
  • 한국과 일본의 경우 건표고를 외관의 품질상태 에 따라 12등급에서 16등급으로 구분하고 있다. 그리고 등급판정 작업은 임의로 추출한 샘플을 대상으로 전문 감정가에 의해 수작업으로 수행되고 있다. 건표고의 품질을 결정짓는 외관의 품질인자들은 갓과 내피에 고루 분포하고 있다. 본 논문에서는 컴퓨터 영상처리 시스템에 의거하여 개발한 건표고 자동 등급판정 및 선별 시작시스템의 구조와 기능 그리고 성능에 대하여 설명하였다. 개발한 시작시스템은 표고의 이송과 취급자동화를 위한 진동이송기, 반전장치, 컨베이어 이송장치와 두 세트의 컴퓨터 영상처리 시스템, 그리고 시스템 통괄제어를 위한 IBM PC AT호환 컴퓨터, 디지털 입출력 보드, 전공압실린더 구동제어를 위한 PLC등으로 구성하였다. 등급판정의 효율성 및 실시간 작업시스템을 고려하여 건표고의 등급판정은 두 세트의 컴퓨터 영상처리 시스템을 이용하여 이송되는 건표고의 갓 또는 내피 중 어디가 위를 향하는 지에 따라 두 단계에 걸쳐 독립적으로 판정을 수행하도록 하였다. 첫 번째 영상처리부에서는 갓표면 영상으로부터 4등급의 고품질 표고를 분류하며 두 번째 영상처리부에서는 내피표면 영상으로부터 중간 및 저품질 표고를 8개의 등급으로 분류한다. 실시간 영상정보처리를 목적으로 기존에 개발한 신경회로망을 이용한 등급판정 알고리즘을 시작시스템에 적용하였다. 개발한 시작기는 88% 이상의 등급판정 정확도를 보여 주었으며, 전공압시스템의 구동제약으로 인하여 표고 1개당 약0.7초의 선별시간이 소요되었다. 일조 선별라인의 경우 본 연구에서 제안한 시작기의 선별능력은 표고가 일차 처리부로 갓이 위로 올라와 있는 상태로 계속 공급된다면 시간당 대략 5,000여 개의 표고를 처리할 수 있을 것으로 기대된다.보강하여 가능하면 B-Pillar의 Middle이 Bending type collapse을 방지하여 Pelvis와 Door가 먼저 접촉하는 방법 등이 적용가능하다. 제작하기 이전에 설계된 부품에 대한 스프링 상수 및 내구특성을 체계적으로 규명하여 제품 시험의 횟수를 줄이고, 보다 정밀한 제품을 제작할 수 있도록 하기 위한 것이다.세포수는 초기 배반포기배에서 팽윤 배반포기배로 진행됨에 따라 두배에서 세배 정도 증가되었음을 알 수 있었다. 또한, differential labelling과 bisbenzimide기법에서 얻어진 각각의 총세포수를 비교하였을 때 총세포수는 발달의 진행 정도에 따라 증가되며 그와 동시에 동일한 군 간의 세포수도 거의 유사함을 알 수 있었다. 따라서, ICM과 TE를 differential labelling하는 기법은 수정란의 quality를 평가하는데 매우 유용한 기법으로서 착상전 embryo 발달을 연구하는데 효과적으로 이용될 수 있다는 것을 시사한다. 고도의 유의차를 나타낸 반면 비수구, 초생수로구 및 Bromegrass 목초구 간에는 아무런 유의차가 인정되지 않았다. 7. 농지보전 처리구인 배수구와 초생수로구는 비처리구에 비해 낮은 침두 유출량과 낮은 토양유실량을 나타내었다.구보다 14% 절감되는 것으로 나타났다.작용하는 것으로 사료된다.된다.정량 분석한 결과이다. 시편의 조성은 33.6 at% U, 66.4 at% O의 결과를 얻었다. 산화물 핵연료의 표면 관찰 및 정량 분석 시험시 시편 표면을 전도성 물질로 증착시키지 않고, Silver Paint 에 시편을 접착하는 방법으로도 만족한 시험 결과를 얻을 수 있었다.째, 회복기 중에 일어나는 입자들의 유입은 자기폭풍의 지속시간을 연장시키는 경향을 보이며 큰

  • PDF

딥러닝 기반 김부각 건조 반제품 표면 검출 모델 개발 (Development of surface detection model for dried semi-finished product of Kimbukak using deep learning)

  • 김태형;권기현;김아나
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.205-212
    • /
    • 2024
  • 본 연구는 건조부각을 유탕기에 투입하기 전 로봇에 장착된 진공 그리퍼를 활용하여 건조 반제품(건조부각)을 이송하기 위한 선별 작업에서 그리핑 성공률을 향상시기키 위한 수단으로 건조부각의 앞면(고명이 있는)과 뒷면(고명이 없는) 표면을 판별하는 딥러닝 모델을 제안한다. 획득한 건조부각 440개의 RGB 영상을 기반으로 데이터 증강 기법을 적용한 후 건조부각 영역 및 표면 정보 라벨링을 진행하였다. 데이터 전처리 과정을 거친 건조부각 데이터를 기반으로 영역 검출을 위해 딥러닝 모델은 YOLO-v5을 적용하였다. 그 결과 건조부각 앞면 영역 검출의 mAP와 mIoU 값은 각각 0.98와 0.96으로 나타났으며, 뒷면의 경우 각각 1.00과 0.95로 나타났다. 앞면과 뒷면 2개의 클래스에 대하여 이진분류한 결과는 average 98.5%, recall 98.3%, precision 98.6%, F1-score 98.4%로 나타났다. 본 연구 결과를 통하여 RGB 영상을 활용한 건조부각의 표면 정보에 대한 분류가 가능하며, 추후 유탕 전 건조부각 표면 선별공정의 로봇-자동화 시스템 개발에 활용될 가능성을 확인하였다.

제조 현장의 비정상 데이터 분류를 위한 기계학습 기반 접근 방안 연구 (Machine Learning based on Approach for Classification of Abnormal Data in Shop-floor)

  • 신현준;오창헌
    • 한국정보통신학회논문지
    • /
    • 제21권11호
    • /
    • pp.2037-2042
    • /
    • 2017
  • 스마트 공장은 미리 입력된 프로그램에 의해 생산시설이 수동적으로 움직이는 공장 자동화 작업 방식과는 달리, 생산 설비 스스로 작업 방식을 결정하여야 한다. 생산 설비 스스로 작업 방식을 결정이라 함은, 이를테면 제조 현장에서 설비의 노후, 문제 발생 예측, 제품의 불량 검출 등과 같은 이상 징후가 발생할 시 이를 조기에 발견한 후 스스로 문제를 해결하는 것을 의미한다. 본 논문에서는 제조 현장의 제조 공정 이상 징후 감지를 위해 대기행렬을 이용한 제조 공정 모델링을 제시하고 해당 모델링에서 이상 징후를 기계학습 기술 중 하나인 SVM을 이용하여 이를 감지하도록 한다. 해당 대기행렬을 M/D/1을 사용하였으며, ${\mu}$, ${\lambda}$, ${\rho}$를 기반으로 컨베이어 벨트 제조 시스템을 모델링하였다. SVM을 이용하여 ${\rho}$의 변화량을 통해 이상 징후를 감지했다.

상용 이산사건 시뮬레이터 패키지들에 대한 선행연구 분석 (Literature Review of Commercial Discrete-Event Simulation Packages)

  • 박지현;황규선
    • 한국시뮬레이션학회논문지
    • /
    • 제32권1호
    • /
    • pp.1-11
    • /
    • 2023
  • 스마트 팩토리 환경과 디지털 트윈 환경이 구축되며 요즘의 공장은 방대한 생산 데이터를 축적하고 공정 현황에 대해 실시간으로 사용자 편의에 맞는 시각화된 결과물로 관리되고 있다. 생산 제품의 다변화에 따른 공정의 복잡도가 증대되어 생산일정 계획이 어려워지고, 자동화 설비가 구축되는 상황에서 납기 지연을 예방하고, 공장의 변동성에 대한 사전 예측을 위한 방안으로 생산 시뮬레이션 기법이 각광받고 있다. 디지털 트윈 환경의 발전과 함께 신규 패키지가 개발되고 기존 패키지들의 기능 업데이트가 됨에 따라 상용 제품별 특성이나 장단점이 명확히 정의되지 않아 사용자들이 어떠한 패키지를 활용하여 시뮬레이션 개발을 진행하는 지에 대한 의사결정이 어려운 상황이다. 이에 본 연구에서는 이산적으로 발생되는 사건을 기반으로 수행하는 이산사건 시뮬레이션(DES, Discrete Event Simulation)의 개념을 정의하고, 다양한 시뮬레이션 패키지에 대한 특성을 비교 분석하고자 한다. 이를 위해 10년간 이산사건 시뮬레이션 패키지를 사용하여 실제 문제를 해결한 연구들을 분석하였고, 사용 빈도가 높은 패키지 세 가지를 도출하였다. 또한, 각 패키지들의 시뮬레이션 기법, 주요 업종, 시뮬레이션을 수행한 대상, 사용한 국가 등으로 분류하여 DES 소프트웨어의 특성과 사용 현황에 대한 분석을 진행하였다. 본 연구 결과는 추후 이산사건 시뮬레이션 패키지 선택에 어려움을 겪는 기업과 사용자에게 선택의 기반을 제공하며 기초자료로 사용될 것으로 판단한다.

상품 리뷰 데이터와 감성 분석 처리 모델링 (Product Review Data and Sentiment Analytical Processing Modeling)

  • 연종흠;이동주;심준호;이상구
    • 한국전자거래학회지
    • /
    • 제16권4호
    • /
    • pp.125-137
    • /
    • 2011
  • 전자 상거래 사이트의 상품 리뷰는 구매 예정자들에게 유용한 정보로 활용될 수 있지만, 방대한 양으로 인해 사용자가 모든 리뷰를 읽는 것은 불가능에 가깝다. 이를 보완하고자 전자 상거래 사이트들은 상품이나 그 특징에 대한 별점 통계, 유용한 리뷰 분류 등을 사용자의 참여나 수작업을 통해 제공하고 있다. 오피니언 마이닝(opinion mining) 혹은 감성 분석(sentiment analysis)은 이러한 일련의 과정을 자동화하는 연구로서, 상품 리뷰의 사용자 의견을 대상으로 그 의견이 긍정적인지, 부정적인지 판단한 후 요약하여 제공한다. 하지만 기존의 감성 분석은 구매예정자에게 유용한 정보, 즉 상품평의 극성을 판별하거나, 상품 특징별 평가 요약 등에만 초점을 맞추고 있어, 상대적으로 의견 정보의 활용도가 낮아지는 문제가 있다. 실제 상품 리뷰에는 상품의 평가 외에도 제품이 가지고 있는 문제점, 고객의 불만 등이 제시되어 있으며, 이를 관리자가 효과적으로 분석하여 의사 결정에 지원에 활용하고자 하는 요구가 늘어나고 있다. 이에 본 논문은 다양한 종류의 의견 정보를 파악하여 데이터 웨어하우스에 저장한 후, 의견 정보를 온라인에서 동적으로 분석하고 통합 처리하는 모델링 방안을 제시한다. 또한 이를 활용하여 실제 전자 상거래 사이트의 한 종류인 어플리케이션 판매 사이트의 리뷰에 대한 분석을 수행하였다.