본 연구는 소셜 빅데이터 분석을 통해 튼살 기능성 화장품 시장과 고객 분석을 수행하고 중소화장품제조 기업의 마케팅 활용 후 시사점을 도출하기 위해 수행되었다. 20만개 이상의 네이버 블로그, 네이버 까페, 인스타그램, 네이버스토어 게시글을 대상으로 R을 활용한 빅데이터 분석을 수행하였다. 키워드 빈도분석, 연관관계 분석을 통해 고객 니즈와 경쟁사 포지셔닝을 이해하고 마케팅 전략 수립을 위한 시사점을 도출하였다. 분석 결과 튼살 완화와 함께 예방이 핵심 소구점으로 파악되었고 선물용 시장을 위한 제품 라인의 확장이 주요 시사점으로 나타났고 제품에 대해 상호 보완할 수 있는 제품과의 연관성이 높은 것으로 나타났다. 전통적인 마케팅 기법과 함께 사용 시 소셜 빅데이터 분석은 증거기반의 의사 결정과 기존에 파악하지 못했던 고객과 시장의 특성 도출에 유용함을 확인하였다. 향후 연구에서는 word2vec과 같은 자동화된 문장 분류를 통해 추가적인 마케팅 인사이트를 얻을 수 있을 것으로 판단된다.
제품 개발 기간을 단축하고 품질과 생산성을 향상시키기 위하여 설계/해석 프로세스의 자동화가 요구된다. 일반적으로 설계/해석 프로세스는 시간과 자원을 많이 필요로 하는 작업이기 때문에 분산 환경에서 다양한 엔지니어링 자원을 효과적으로 활용할 수 있어야 한다. 분산 환경에서의 유연한 엔지니어링 프로세스의 통합과 자동화를 가능하게 하기 위해 한국기계연구원에서는 SOA(Service Oriented Architecture)기반의 e-엔지니어링 프레임워크를 구축하였다. 본 논문에서는 한국기계연구원의 e-엔지니어링 프레임워크의 개념 및 구조를 설명한다. 또한 e-엔지니어링 프레임워크에서 발생할 수 있는 예외사항에 중점을 두고 이러한 예외사항에 대해서 엔지니어링 프로세스 측면과 태스크 측면으로 분류하여 장애진단 및 회복 기법을 제시한다.
용수 다소비 산업으로 분류되는 제지공업의 특성 상, 용수사용의 억제 및 용수의 무방류화에 대한 압력이 증가되고 있는 반면, 초지환경은 날로 열악해지고 있는 실정이다. 한 예로써, 용지의 재활용율 및 재사용 비율이 증가함에 따라 원료의 저급화가 심 각한 수준에 이르고 있으며, 이러한 초지환경의 변화는 각질화되고 극도로 미세화된 다량의 미세섬유 발생 및 잡고지로부터 유입되는 점착성 이물질과 무기 충진제의 도입 등을 유발함으로서 제품의 물리적 성질 저하, 탈수부하 증가로 인한 생산성 저하, 약품사용량 증가 등을 초래하여, 결과적으로는 폐수처리장의 부하를 증대시킴과 동시에 청수사용량 및 폐수방류량을 증가시키는 악순환을 되풀이하게 된다. 국내 제지산업이 국제적 경쟁력을 갖추기 위해서는 제품의 증대가 필수적이나, 원료와 설비의존도를 감안할 때, 제품특성과 공정 분을 결정하는 습부공정을 정확히 파악하여 최적 운전조건을 확립하는 것이 가장 경제적이고 용이한 방법일 뿐만 아니라 전체 제지공정의 정정화에도 기여할 수 있을 것으로 판단된다. 일정규모이상의 종이를 생산하는 제지공장은 거의 대부분 컴퓨터로 처리되는 온라인 공정조절 시스템(On-line process control system)을 구비하고 료의 도입에서부터 설비운전 및 제품의 기본적인 품질관리까지 실시간의 자동화되고 안정적인 운전과 관리시스템을 유지하고 있다. 그러나 전체 제지공정 중, 제품 물성과 운전조건의 대부분을 결정하는 습부공정만큼은 아직도 주기적인 분석이 행해지고 있지 않을 뿐만 아니라, 슬러리의 농도나 보류도 정도를 제이하면 분석항목 조차도 변변히 확립되어 있지 않을 실정이다. 이는 다량의 물 속에 존재하게 되는 용전물질(Dissolved solids, DS), 부유물질(Suspended solids, SS), 섬 유(Fibers), 무기 미 세분(Inorganic f fines), 그리고 투입되는 약품간에 발생하는 계면동전현상 및 이러한 현상과 최종 지제 품의 물성간의 상관관계에 대한 이해 정도나 경험 부족에서 기인하는 것으로 생각된다. 1 1983년 미국제지기술연합회(T APpI)의 제지용 첨가제 분과위원회(Papermaking A Additive Committee)에서는 습부공정의 적절한 조절을 위해 어떤 항목들이 필요하며 그 중요도는 어떠한가를 조사하였으며, 그 결과로 전하밀도, 제타전위, 보류도 및 여수 도, 무기 미세분 함량 등이 중요하다고 보고하였다. 그러나 지료의 전기적 특성을 실시 간으로 측정하는 기자재류가 최근에 이르러서야 도입되고 있는 실정이기 때문에 충분 한 현장적용 사례가 보고되지 못하고 있으며, 결과적으로 얻어진 정보와 최종 지제품의 물성 및 초지기 운전조건과의 상관관계를 확립하는 작업결과는 더욱 찾아보기 어렵다. 따라서, 본 연구에서는, 라이너지 제조공장의 습부공정에 투입되는 약품이 지료 의 전기적 성질, 즉 전하밀도와 제타전위에 미치는 영향을 모니터링함으로서 지료의 전기적 성질들과 습부 공정상태와의 상관관계를 살펴보고자 하였다. 본 연구는 다음과 같은 순서로 진행하였다.
인공지능 기술의 급속한 발전과 함께 빅데이터의 상당 부분을 차지하는 비정형 텍스트 데이터로부터 의미있는 정보를 추출하기 위한 다양한 연구들이 활발히 진행되고 있다. 비즈니스 인텔리전스 분야에서도 새로운 시장기회를 발굴하거나 기술사업화 주체의 합리적 의사결정을 돕기 위한 많은 연구들이 이뤄져 왔다. 본 연구에서는 기업의 성공적인 사업 추진을 위해 핵심적인 정보 중의 하나인 시장규모 정보를 도출함에 있어 기존에 제공되던 범위보다 세부적인 수준의 제품군별 시장규모 추정이 가능하고 자동화된 방법론을 제안하고자 한다. 이를 위해 신경망 기반의 시멘틱 단어 임베딩 모델인 Word2Vec 알고리즘을 적용하여 개별 기업의 생산제품에 대한 텍스트 데이터를 벡터 공간으로 임베딩하고, 제품명 간 코사인 거리(유사도)를 계산함으로써 특정한 제품명과 유사한 제품들을 추출한 뒤, 이들의 매출액 정보를 연산하여 자동으로 해당 제품군의 시장규모를 산출하는 알고리즘을 구현하였다. 실험 데이터로서 통계청의 경제총조사 마이크로데이터(약 34만 5천 건)를 이용하여 제품명 텍스트 데이터를 벡터화 하고, 한국표준산업분류 해설서의 산업분류 색인어를 기준으로 활용하여 코사인 거리 기반으로 유사한 제품명을 추출하였다. 이후 개별 기업의 제품 데이터에 연결된 매출액 정보를 기초로 추출된 제품들의 매출액을 합산함으로써 11,654개의 상세한 제품군별 시장규모를 추정하였다. 성능 검증을 위해 실제 집계된 통계청의 품목별 시장규모 수치와 비교한 결과 피어슨 상관계수가 0.513 수준으로 나타났다. 본 연구에서 제시한 모형은 의미 기반 임베딩 모델의 정확성 향상 및 제품군 추출 방식의 개선이 필요하나, 표본조사 또는 다수의 가정을 기반으로 하는 전통적인 시장규모 추정 방법의 한계를 뛰어넘어 텍스트 마이닝 및 기계학습 기법을 최초로 적용하여 시장규모 추정 방식을 지능화하였다는 점, 시장규모 산출범위를 사용 목적에 따라 쉽고 빠르게 조절할 수 있다는 점, 이를 통해 다양한 분야에서 수요가 높은 세부적인 제품군별 시장정보 도출이 가능하여 실무적인 활용성이 높다는 점에서 의의가 있다.
한국과 일본의 경우 건표고를 외관의 품질상태 에 따라 12등급에서 16등급으로 구분하고 있다. 그리고 등급판정 작업은 임의로 추출한 샘플을 대상으로 전문 감정가에 의해 수작업으로 수행되고 있다. 건표고의 품질을 결정짓는 외관의 품질인자들은 갓과 내피에 고루 분포하고 있다. 본 논문에서는 컴퓨터 영상처리 시스템에 의거하여 개발한 건표고 자동 등급판정 및 선별 시작시스템의 구조와 기능 그리고 성능에 대하여 설명하였다. 개발한 시작시스템은 표고의 이송과 취급자동화를 위한 진동이송기, 반전장치, 컨베이어 이송장치와 두 세트의 컴퓨터 영상처리 시스템, 그리고 시스템 통괄제어를 위한 IBM PC AT호환 컴퓨터, 디지털 입출력 보드, 전공압실린더 구동제어를 위한 PLC등으로 구성하였다. 등급판정의 효율성 및 실시간 작업시스템을 고려하여 건표고의 등급판정은 두 세트의 컴퓨터 영상처리 시스템을 이용하여 이송되는 건표고의 갓 또는 내피 중 어디가 위를 향하는 지에 따라 두 단계에 걸쳐 독립적으로 판정을 수행하도록 하였다. 첫 번째 영상처리부에서는 갓표면 영상으로부터 4등급의 고품질 표고를 분류하며 두 번째 영상처리부에서는 내피표면 영상으로부터 중간 및 저품질 표고를 8개의 등급으로 분류한다. 실시간 영상정보처리를 목적으로 기존에 개발한 신경회로망을 이용한 등급판정 알고리즘을 시작시스템에 적용하였다. 개발한 시작기는 88% 이상의 등급판정 정확도를 보여 주었으며, 전공압시스템의 구동제약으로 인하여 표고 1개당 약0.7초의 선별시간이 소요되었다. 일조 선별라인의 경우 본 연구에서 제안한 시작기의 선별능력은 표고가 일차 처리부로 갓이 위로 올라와 있는 상태로 계속 공급된다면 시간당 대략 5,000여 개의 표고를 처리할 수 있을 것으로 기대된다.보강하여 가능하면 B-Pillar의 Middle이 Bending type collapse을 방지하여 Pelvis와 Door가 먼저 접촉하는 방법 등이 적용가능하다. 제작하기 이전에 설계된 부품에 대한 스프링 상수 및 내구특성을 체계적으로 규명하여 제품 시험의 횟수를 줄이고, 보다 정밀한 제품을 제작할 수 있도록 하기 위한 것이다.세포수는 초기 배반포기배에서 팽윤 배반포기배로 진행됨에 따라 두배에서 세배 정도 증가되었음을 알 수 있었다. 또한, differential labelling과 bisbenzimide기법에서 얻어진 각각의 총세포수를 비교하였을 때 총세포수는 발달의 진행 정도에 따라 증가되며 그와 동시에 동일한 군 간의 세포수도 거의 유사함을 알 수 있었다. 따라서, ICM과 TE를 differential labelling하는 기법은 수정란의 quality를 평가하는데 매우 유용한 기법으로서 착상전 embryo 발달을 연구하는데 효과적으로 이용될 수 있다는 것을 시사한다. 고도의 유의차를 나타낸 반면 비수구, 초생수로구 및 Bromegrass 목초구 간에는 아무런 유의차가 인정되지 않았다. 7. 농지보전 처리구인 배수구와 초생수로구는 비처리구에 비해 낮은 침두 유출량과 낮은 토양유실량을 나타내었다.구보다 14% 절감되는 것으로 나타났다.작용하는 것으로 사료된다.된다.정량 분석한 결과이다. 시편의 조성은 33.6 at% U, 66.4 at% O의 결과를 얻었다. 산화물 핵연료의 표면 관찰 및 정량 분석 시험시 시편 표면을 전도성 물질로 증착시키지 않고, Silver Paint 에 시편을 접착하는 방법으로도 만족한 시험 결과를 얻을 수 있었다.째, 회복기 중에 일어나는 입자들의 유입은 자기폭풍의 지속시간을 연장시키는 경향을 보이며 큰
본 연구는 건조부각을 유탕기에 투입하기 전 로봇에 장착된 진공 그리퍼를 활용하여 건조 반제품(건조부각)을 이송하기 위한 선별 작업에서 그리핑 성공률을 향상시기키 위한 수단으로 건조부각의 앞면(고명이 있는)과 뒷면(고명이 없는) 표면을 판별하는 딥러닝 모델을 제안한다. 획득한 건조부각 440개의 RGB 영상을 기반으로 데이터 증강 기법을 적용한 후 건조부각 영역 및 표면 정보 라벨링을 진행하였다. 데이터 전처리 과정을 거친 건조부각 데이터를 기반으로 영역 검출을 위해 딥러닝 모델은 YOLO-v5을 적용하였다. 그 결과 건조부각 앞면 영역 검출의 mAP와 mIoU 값은 각각 0.98와 0.96으로 나타났으며, 뒷면의 경우 각각 1.00과 0.95로 나타났다. 앞면과 뒷면 2개의 클래스에 대하여 이진분류한 결과는 average 98.5%, recall 98.3%, precision 98.6%, F1-score 98.4%로 나타났다. 본 연구 결과를 통하여 RGB 영상을 활용한 건조부각의 표면 정보에 대한 분류가 가능하며, 추후 유탕 전 건조부각 표면 선별공정의 로봇-자동화 시스템 개발에 활용될 가능성을 확인하였다.
스마트 공장은 미리 입력된 프로그램에 의해 생산시설이 수동적으로 움직이는 공장 자동화 작업 방식과는 달리, 생산 설비 스스로 작업 방식을 결정하여야 한다. 생산 설비 스스로 작업 방식을 결정이라 함은, 이를테면 제조 현장에서 설비의 노후, 문제 발생 예측, 제품의 불량 검출 등과 같은 이상 징후가 발생할 시 이를 조기에 발견한 후 스스로 문제를 해결하는 것을 의미한다. 본 논문에서는 제조 현장의 제조 공정 이상 징후 감지를 위해 대기행렬을 이용한 제조 공정 모델링을 제시하고 해당 모델링에서 이상 징후를 기계학습 기술 중 하나인 SVM을 이용하여 이를 감지하도록 한다. 해당 대기행렬을 M/D/1을 사용하였으며, ${\mu}$, ${\lambda}$, ${\rho}$를 기반으로 컨베이어 벨트 제조 시스템을 모델링하였다. SVM을 이용하여 ${\rho}$의 변화량을 통해 이상 징후를 감지했다.
스마트 팩토리 환경과 디지털 트윈 환경이 구축되며 요즘의 공장은 방대한 생산 데이터를 축적하고 공정 현황에 대해 실시간으로 사용자 편의에 맞는 시각화된 결과물로 관리되고 있다. 생산 제품의 다변화에 따른 공정의 복잡도가 증대되어 생산일정 계획이 어려워지고, 자동화 설비가 구축되는 상황에서 납기 지연을 예방하고, 공장의 변동성에 대한 사전 예측을 위한 방안으로 생산 시뮬레이션 기법이 각광받고 있다. 디지털 트윈 환경의 발전과 함께 신규 패키지가 개발되고 기존 패키지들의 기능 업데이트가 됨에 따라 상용 제품별 특성이나 장단점이 명확히 정의되지 않아 사용자들이 어떠한 패키지를 활용하여 시뮬레이션 개발을 진행하는 지에 대한 의사결정이 어려운 상황이다. 이에 본 연구에서는 이산적으로 발생되는 사건을 기반으로 수행하는 이산사건 시뮬레이션(DES, Discrete Event Simulation)의 개념을 정의하고, 다양한 시뮬레이션 패키지에 대한 특성을 비교 분석하고자 한다. 이를 위해 10년간 이산사건 시뮬레이션 패키지를 사용하여 실제 문제를 해결한 연구들을 분석하였고, 사용 빈도가 높은 패키지 세 가지를 도출하였다. 또한, 각 패키지들의 시뮬레이션 기법, 주요 업종, 시뮬레이션을 수행한 대상, 사용한 국가 등으로 분류하여 DES 소프트웨어의 특성과 사용 현황에 대한 분석을 진행하였다. 본 연구 결과는 추후 이산사건 시뮬레이션 패키지 선택에 어려움을 겪는 기업과 사용자에게 선택의 기반을 제공하며 기초자료로 사용될 것으로 판단한다.
전자 상거래 사이트의 상품 리뷰는 구매 예정자들에게 유용한 정보로 활용될 수 있지만, 방대한 양으로 인해 사용자가 모든 리뷰를 읽는 것은 불가능에 가깝다. 이를 보완하고자 전자 상거래 사이트들은 상품이나 그 특징에 대한 별점 통계, 유용한 리뷰 분류 등을 사용자의 참여나 수작업을 통해 제공하고 있다. 오피니언 마이닝(opinion mining) 혹은 감성 분석(sentiment analysis)은 이러한 일련의 과정을 자동화하는 연구로서, 상품 리뷰의 사용자 의견을 대상으로 그 의견이 긍정적인지, 부정적인지 판단한 후 요약하여 제공한다. 하지만 기존의 감성 분석은 구매예정자에게 유용한 정보, 즉 상품평의 극성을 판별하거나, 상품 특징별 평가 요약 등에만 초점을 맞추고 있어, 상대적으로 의견 정보의 활용도가 낮아지는 문제가 있다. 실제 상품 리뷰에는 상품의 평가 외에도 제품이 가지고 있는 문제점, 고객의 불만 등이 제시되어 있으며, 이를 관리자가 효과적으로 분석하여 의사 결정에 지원에 활용하고자 하는 요구가 늘어나고 있다. 이에 본 논문은 다양한 종류의 의견 정보를 파악하여 데이터 웨어하우스에 저장한 후, 의견 정보를 온라인에서 동적으로 분석하고 통합 처리하는 모델링 방안을 제시한다. 또한 이를 활용하여 실제 전자 상거래 사이트의 한 종류인 어플리케이션 판매 사이트의 리뷰에 대한 분석을 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.