• Title/Summary/Keyword: 제트 확산

Search Result 114, Processing Time 0.027 seconds

Effect of a Turbulent Wake on Two-Dimensional Subsonic Jet (노즐내 물체의 후류가 아음속 이차원 제트구조에 미치는 영향에 관한 연구)

  • Kim, Tae-Ho;Lee, Sang-Chan;Yoon, Bok-Hyun;Oh, Dae-Geun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.986-991
    • /
    • 2003
  • A turbulent wake generated by a cylinder in nozzle contraction affects to the jet flow characteristics. In this study, a computational work to investigate the effect of the turbulent wake on two-dimensional subsonic jet was carried out with three different kinds of nozzle. Computations are applied to the two-dimensional unsteady, Navier-Stokes equations. Several kinds of turbulent models and wall functions are employed to validate the computational predictions. It was known that the wake flow enhanced the spread of the jet flow, compared with no wake flow condition. It was also found that the jet core is shortened by the wake flow developed from a control cylinder.

  • PDF

Numerical Study of Flame Stability of Turbulent Combustion in a Dual Combustion Ramjet (이중연소 램제트 엔진의 난류 연소 현상과 화염 안정성)

  • Choi, Jeong-Yeol;Han, Sang-Hoon;Kim, Kyu-Hong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.371-374
    • /
    • 2011
  • High-resolution numerical study is carried out to investigate the flame stability of the turbulent supersonic combustion in a Dual-Combustion Ramjet (DCR). The auto-ignition in a shear layer between hydrogen/carbon-monoxide syngas and air was studied at elevated enthalpy condition. Comparison of a constant area combustor and a combustor with a small divergence angle shows that the supersonic combustion has a characteristics of the lifted flame and its stability is influenced significantly by the compressibility.

  • PDF

The development of small water-jet propulsion for 150HP grade inboard type (150마력급 선내형 소형 워터제트 추진시스템 개발)

  • Lee, Joong-Seop;Lee, Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.246-252
    • /
    • 2014
  • This study is on the development of 150PS inboard type of compact water jet propulsion system. The water jet is composed of intake, impeller, diffuser, reverse bucket and main shaft. Components of water jet have been manufactured through precision processing after sand casting. Development of water jet propelled engine has been finally completed by processes which are design, production and inspection on each component. The water jet performance characteristics show that 0.29 m3/s of maximum flow rate and 37 m/s of flow velocity have been secured in the ground test pool. Field test was performed by 21ft test ship that water jet propulsion equipment developed in this study was installed. As a result, the weight of hull, engine and other parts of the ship has been almost 1.2 ton and 45 km/h of maximum sailing speed has been recorded with 3700 rpm of engine in the domestic coast test.

오일확산 펌프를 이용한 10-9 Pa 영역의 초고진공 구현

  • Jo, Bok-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.141.1-141.1
    • /
    • 2014
  • 오일 증기의 제트를 분사하여 잔류가스를 배기하는 오일확산펌프는, 구조가 간단하여 고장이 적고 저렴하며 소음 및 전기노이즈가 적게 발생하는 많은 장점을 가지고 있다. 그러나 오일의 증기압에 의해 그 도달압력이 10-9 Torr 이상으로 제한되어, 액체질소로 냉각되는 배플형태의 저온 트랩을 사용하지 않는 한 10-10 Torr영역의 초고진공 배기용으로는 사용하지 못하는 것으로 알려져 있다. 유회전펌프로 뒷받침 배기(foreline pumping)하는 700l/s의 배기속도를 가진 오일확산펌프에 300 liter/sec의 컨덕턴스를 가진 액체질소 트랩을 부착하여 메탈 실링을 사용하는 초고진공 챔버를 배기하였다. 액체질소트랩에 액체질소를 투입하면 $1{\times}10-8Pa$이하의 초고진공이 얻어졌으나, 액체질소가 증발하여 트랩의 온도가 상온으로 상승하면 압력도 $1{\times}10-7Pa$ 이상으로 상승하였다. 50 liter/sec의 배기속도를 가진 터보분자펌프로 오일확산펌프를 뒷받침 배기하면 액체질소를 투입하지 않은 상태에서 $5{\times}10-9Pa$이하의 초고진공이 얻어졌으며, 액체질소를 투입하여도 압력은 거의 변화하지 않았다. 잔류가스분석장치로 얻은 잔류가스 성분 스펙트럼은 수소가 잔류가스의 대부분을 차지하는 것을 보여주었다.

  • PDF

Prediction of Isothermal and Reacting Flows in Widely-Spaced Coaxial Jet, Diffusion-Flame Combustor (큰 지름비를 가지는 동축제트 확산화염 연소기내의 등온 및 연소 유동장의 예측)

  • O, Gun-Seop;An, Guk-Yeong;Kim, Yong-Mo;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2386-2396
    • /
    • 1996
  • A numerical simulation has been performed for isothermal and reacting flows in an exisymmetric, bluff-body research combustor. The present formulation is based on the density-weighted averaged Navier-Stokes equations together with a k-epsilon. turbulence model and a modified eddy-breakup combustion model. The PISO algorithm is employed for solution of thel Navier-Stokes system. Comparison between measurements and predictions are made for a centerline axial velocities, location of stagnation points, strength of recirculation zone, and temperature profile. Even though the numerical simulation gives acceptable agreement with experimental data in many respects, the present model is defictient in predicting the recoveryt rate of a central near-wake region, the non-isotropic turbulence effects, and variation of turbulent Schmidt number. Several possible explanations for these discrepancies have been discussed.

Near-Field Hydrodynamic Analysis of the Submerged Thermal Discharge Using CFD Model (CFD 모델을 이용한 수중방류 온배수의 근역 동수역학 해석)

  • Hwang, In-Tae;Kim, Deok-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.466-473
    • /
    • 2011
  • The buoyancy and initial momentum fluxes make near-field dominated by buoyant jet when thermal discharge releases underwater. In order to estimate prediction capabilities of those near-field phenomena, non-hydrostatic RANS applied CFD(Computational Fluid Dynamic) model was used. Condition of model was composed based on past laboratory experiments. Numerical simulations carried out for the horizontal buoyant jet in the stagnant flow and vertical buoyant jet into crossflow. The results of simulation are compared with the terms of trajectory and dilution rate of laboratory experiments and analytic model(CorJET) results. CFD model showed a good agreement with them. CFD model can be appropriate for assessment of submerged thermal discharge effect because CFD model can resolve the limitations of near-field analytic model and far-field quasi 3D hydrodynamic model. The accuracy and capability of the CFD model is reviewed in this study. If the computational efficiency get improved, CFD model can be widely applied for simulation of transport and diffusion of submerged thermal discharge.

Numerical Investigation on Oil Spill from Damaged Riser (손상된 라이저로부터 유출된 기름 확산에 대한 수치해석)

  • Kim, Hyo Ju;Lee, Sang Chul;Park, Sunho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.99-110
    • /
    • 2016
  • When a riser is damaged, the oil spills to sea. Oil spills cause huge economic losses as well as a destruction of the marine environment. To reduce losses, it is needed to predict spilled oil volume from risers and the excursion of the oil. The present paper simulated the oil spill for a damaged riser using open source libraries, called Open-FOAM. To verify numerical methods, jet flow and Rayleigh-Taylor instability were simulated. The oil spill was simulated for various damaged leak size, spilled oil volume rates, damaged vertical locations of a riser, and current speeds. From results, the maximum excursion of the spilled oil at the certain time was predicted, and a forecasting model for various parameters was suggested.

A Study on Nozzle Performance Influence with Aft-deck Geometry (Aft-deck 형상에 의한 노즐 성능 영향성 연구)

  • Lee, Changwook;Park, Youngseok;Jin, Juneyub;Kim, Jaewon;Choi, Seong Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.42-54
    • /
    • 2021
  • The Aft-deck is being applied to the latest unmanned aircraft for the purpose of shielding the gas turbine exhaust plume or spreading jets to increase the mixing rate with the ambient air, thereby reducing the temperature of exhaust gases. In this study, we would like to find out how the performance of the nozzle is affected by the design variables of the Aft-deck. The design variables of aft-deck are selected as length, expansion angle and upper deck shape. The correlation between thrust and plume shielding rate with the length variable is presented. And the correlation between the thrust and the jet diffusion range is presented according to the expansion angle. In addition, the thrust increase effect is confirmed by the removal of the upper deck and the characteristics of transverse velocity vector determined mixing performance with external flow.

Hazard Distance from Hydrogen Accidents (수소가스사고의 피해범위)

  • Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2012
  • An analysis was completed of the hazards distance of hydrogen accidents such as jet release, jet fire, and vapor cloud explosion(VCE) of hydrogen gas, and simplified equations have been proposed to predict the hazard distances to set up safety distance by the gas dispersion, fire, and explosion following hydrogen gas release. For a small release rate of hydrogen gas, such as from a pine-hole, the hazard distance from jet dispersion is longer than that from jet fire. The hazard distance is directly proportional to the pressure raised to a half power and to the diameter of hole and up to several tens meters. For a large release rate, such as from full bore rupture of a pipeline or a large hole of storage vessel, the hazard distance from a large jet fire is longer than that from unconfined vapor cloud explosion. The hazard distance from the fire may be up to several hundred meters. Hydrogen filling station in urban area is difficult to compliance with the safety distance criterion, if the accident scenario of large hydrogen gas release is basis for setting up the safety distance, which is minimum separation distance between the station and building. Therefore, the accident of large hydrogen gas release must be prevented by using safety devices and the safety distance may be set based on the small release rate of hydrogen gas. But if there are any possibility of large release, populated building, such as school, hospital etc, should be separated several hundred meters.