• Title/Summary/Keyword: 제트유동

Search Result 614, Processing Time 0.019 seconds

A Simple Calculational Method by using Modified Von Mises Transformation applied to the Coaxial Turbulent Jet Mixing (유동함수를 이용한 난류제트혼합유동 계산에 관한 연구)

  • Choi Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.97-104
    • /
    • 2005
  • A simple but efficient grid generation technique by using the modified compressible form of stream function has been formulated. Transformation of a physical plane to a streamline plane, the Von Mises Transformation, has been widely used to solve the differential equations governing flow phenomena, however, limitation arises in low velocity region of boundary layer, mixing layer and wake region where the relatively large grid spacing is inevitable. Modified Von Mises Transformation with simple mathematical adjustment for the stream function is suggested and applied to solve the confined coaxial turbulent jet mixing with simple $\kappa-\epsilon$ turbulence model. Comparison with several experimental data of axial mean velocity, turbulent kinetic energy, and Reynolds shear stress distribution shows quite good agreement in the mixing layer except in the centerline where the turbulent kinetic energy distributions were somewhat under estimated. This formulation is strongly suggested to be utilized specially for free turbulent mixing layers in axisymmetric flow conditions such as the investigation of mixing behavior, jet noise production and reduction for Turbofan engines.

Heat Transfer Characteristics under Recirculation zone of Ramjet Combustor (재순환 영역이 램제트 연소실에서의 열전달 특성에 미치는 영향)

  • Lee, Keon-Woo;Oh, Min-Keun;Ham, Hee-Chul;Hwang, Ki-Young;Cho, Hyung-Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.6
    • /
    • pp.9-17
    • /
    • 2007
  • This experimental study has been conducted to investigate the effect of the recirculation zone on the multi-slot film cooling in the ramjet combustor. The recirculation zone which is generated by the protrusion tip on the entrance of the coolant flow path affects on the first slot. Velocity fields, dimensionless temperature fields and adiabatic film cooling effectiveness on the downstream wall of the slot exit are measured. The results show that the film cooling performance is rapidly decreased after the slot exit by shear layer and high turbulence intensity between separated flows and coolant flows.

램제트 엔진 흡입구의 점성 유동장 수치계산

  • 강호철;신동신
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.59-59
    • /
    • 2002
  • 램제트 추진기관은 압축과정을 별도의 부품 없이 형상에 의해서 감속하여 연소 압력비를 얻는다. 따라서 구동 마하수와 형상에 의해 흡입과정의 압축 효율이 결정된다. 설계점은 충분한 유량을 확보 할 수 있는 유량과 충격파 각을 조절하여 전압력 손실을 줄이도록 고려되어야 한다. 또한 연소가 일어나면 연소실 압력이 배압으로 작용하고 비행시에 받음각은 변하므로 이에 따른 성능 분석도 고려 되어야 할 사항이다. 본 연구는 국내에서 실험한 형상에 대해 수치계산을 수행하여 코드의 검증과 아울러 램제트 유동장의 수치적 시뮬레이션도 설계단계에서 하나의 도구로 이용할 수 있음을 보여준다. 실험에서는 배압 조건을 얻기 위해 유동 블록키지를 유로 내에 두어 상응하는 배압을 얻었지만 본 계산에서는 압력 경계조건을 직접 사용하였다. 유동이 비정상 특성을 가지므로 시간 정확도를 이차로 가지도록 이중시간 전진법을 사용하였다. 사용한 압력비는 충격파가 카울 끝에 닿는 임계상태에 가까운 12, 13, 14에 대해 계산을 수행하였고 부스터모드로 흡입구 끝이 막혀 있다가 램제트 모드로 바뀌어 연소실 압력이 위의 압력비라고 가정할 때의 비정상 천이 과정을 계산해 보았다. 본 계산은 흡입구 부분만을 떼어놓고 적절한 가정 하에 수행되었지만 연소실 내부도 비정상 특성을 가지므로 흡입구와 연소실을 동시에 같이 계산해야한다. 추후에 전체적인 계산을 진행하기 위한 전 단계로 흡입구 계산만을 수행하여 실험과 잘 일치하는 계산 결과를 얻었고 전체 계산을 위한 연구는 진행 중에 있다.

  • PDF

Flow and Heat Transfer Characteristics on Oblique Impingement Surface by Single Axisymmetric Jet (단일 축대칭제트에 의한 경사충돌면에서 유동 및 열전달 특성)

  • 이창호;황상동;조형희;정학재
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.34-40
    • /
    • 1999
  • An experimental study has been conducted to determine the effects of inclined impinging jet on the local heat transfer coefficients. A single jet with nozzle diameter of 24.6 mm was tested for Reynolds numbers from 10,000 to 70,000 and nozzle-to-plate spacings of 2~6 jet diameters. The angle of inclination of the impingement surface relative to the horizontal surface was varied from $0^{\cire}$ (normal impingement) to $60^{\cire}$. The results indicate that the point of maximum heat transfer is moved up from the geometrical stagnation point of inclined surface by Coanda effect. The local heat transfer coefficients on the minor jet region decrease more rapidly than on the major jet region, thus creating an imbalance in the cooling capabilities on the two sides.

  • PDF

Numerical Investigation of the Lateral Jet Effect on the Aerodynamic Characteristics of the Missile: Part I. Jet Flow Condition Effect (측 추력 제트가 미사일의 공력특성에 미치는 영향에 관한 연구 : Part I. 제트 유동특성 영향)

  • Min, Byung-Young;Lee, Jae-Woo;Byun, Yung-Hwan;Hyun, Jae-Soo;Kim, Sang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.64-71
    • /
    • 2004
  • A computational study on the supersonic flow around the lateral jet controlled missile has been performed. For this purpose a three dimensional Navier-Stokes computer code(AADL3D) has been developed and case studies have been performed by comparing the normal force coefficient and the moment coefficient of a missile body for different jet flow conditions including jet pressure and jet Mach number. The results show different behavior of normal force and moment variation according to jet pressure variation and jet Mach number variation. From the detailed flow field analyses, it is verified that most of the normal force loss and the pitching moment generation are taken place at the low-pressure region behind the jet nozzle. Furthermore, it is shown that the pitching moment can be efficiently reduced by obtaining the lateral thrust through higher jet Mach number rather than through high jet pressure.

Numerical Analysis on Screech Tone in a Supersonic Jet (숯계산에 의한 초음속 제트의 스크리티 톤 소음 해석)

  • Kim, Yong-Seok;Lee, Duck-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.94-100
    • /
    • 2007
  • An axisymmetric supersonic jet screech in the Mach number range from 1.07 to 1.2 is numerically simulated. The axisymmetric mode is the dominant screech mode for an axisymmetric jet. The Reynolds-averaged Navier-Stokes equations in the conjunction with a modified Spalart-Allmaras turbulence model are employed. A high resolution finite volume essentially non-oscillatory(ENO) schemes are used along with nonreflecting characteristic boundary conditions that are crucial to screech tone computations to accurately capture the sound waves, shock-cell structures and large-scale instability waves.

An Experimental Study on Noise Phenomena in Supersonic Over-expanded Jet (초음속 과팽창 제트에서 발생하는 소음현상에 관한 실험적 연구)

  • Kweon Yong-Hun;Lim Chae-Min;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.337-340
    • /
    • 2006
  • The present paper describes an experimental work to investigate a transonic resonance in supersonic jet that is discharged from a convergent-divergent nozzle. When the nozzle m: at low nozzle pressure ratios, the shock occurs within the divergent section of the nozzle. The transonic resonance of a jet flow is generated by an emission of strong acoustic tones due to the unsteadiness of the shock. A Schlieren optical system is used to visualize the supersonic jet flow In order to specify the flow resonance of a jet, acoustic measurements are performed to obtain noise spectra. The acoustic characteristics of transonic resonace are compared with those of screech tones. The results obtained show that unlike screech frequency, the transonic reso- nace frequency somewhat increases with increasing the nozzle pressure ratio.

  • PDF

Numerical Simulation of the Screech Phenomenon in a Supersonic Jet (수치계산에 의한 초음속 제트에서의 스크리치 현상 해석)

  • Kim, Yong-Seok;Kim, Sung-Cho;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.329-334
    • /
    • 2007
  • An axisymmetric supersonic jet screech in the Mach number range from 1.07 to 1.2 is numerically simulated. The axisymmetric mode is the dominant screech mode for an axisymmetric jet. The Reynolds-averaged Navier-Stokes equations in the conjunction with modified Spalart-Allmaras turbulence model are employed. A high resolution finite volume essentially non-oscillatory(ENO) schemes are used along with nonreflecting characteristic boundary conditions that are crucial to screech tone computations to accurately capture the sound waves, shock-cell structures, unsteady shock motions and large-scale instability waves.

  • PDF