• Title/Summary/Keyword: 제트유동

Search Result 614, Processing Time 0.023 seconds

Scramjet Experimental Techniques Using a Shock Tunnel (충격파 터널을 이용한 스크램제트 실험 기술)

  • Yang, Sungmo;Kim, Keunyeong;Chang, Eric Won Keun;Jin, Sangwook;Park, Gisu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.97-106
    • /
    • 2018
  • This paper summarizes the technical difficulties pertaining the double-compression ramp scramjet inlet model testing in a shock tunnel and their corresponding solutions. Four technical difficulties are identified: 1) test facility unstart, 2) flow disturbance and model damage due to the impact of diaphragm debris, 3) lack of fuel jet development due to multiple injection, and 4) short test time. After overcoming the identified technical difficulties, the improved results were confirmed through the results of shadowgraph images and shock tube end wall pressure.

Investigation of Flow Distribution Characteristics at the Channel Location according to the Header Shape of Welded Plate Heat Exchanger (용접식 판형열교환기 헤더형상에 따른 채널 위치별 유량 분배 특성 고찰)

  • Ham, Jeonggyun;Kim, Eui;An, Sungkook;Cho, Honghyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.3
    • /
    • pp.7-13
    • /
    • 2019
  • To improve the flow distribution at channel locations in the welded plate heat exchanger with "L"-type inflow, the flow visualization of Model 1 was carried out. Besides, the characteristics of flow distribution was investigated experimentally according to the header shape. The inlet flow rate for each channel location was increased at the side channels but decreased at the central channels. In the case of Model 2, which has a slant structure added to the basic header of Model 1, the unevenness of inlet flow increased by 23% from 0.019 to 0.023 as compared to Model 1. On the other hand, Model 3, which has a baffle structure added to Model 2, showed 0.064 unevenness in inlet flow, which was a 36% reduction one compared to Model 1. To improve the distribution at each channel in the welded plate heat exchanger with "L"-type flow, it is necessary to improve the header external shape for the guide of flow as well as the baffle structure for reduction of vortex flow.

CPFD Simulation of Bubble Flow in a Bubbling Fluidized Bed with Shroud Nozzle Distributor and Vertical Internal (CPFD 시뮬레이션을 통한 Shroud 노즐 및 수직 구조물이 설치된 기포 유동층 반응기 내에서의 기포 흐름 해석)

  • Lim, Jong Hun;Bae, Keon;Shin, Jea Ho;Lee, Dong Ho;Han, Joo Hee;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.678-686
    • /
    • 2016
  • The effect of internal and shroud nozzle distributor to bubbling fluidized beds which has the size of $0.3m-ID{\times}2.4m-high$ column was modeled by CPFD (Computational Particle-Fluid Dynamics). Metal-grade silicon particles (MG-Si) were used as bed materials which have $d_p=149{\mu}m$, ${\rho}_p=2,325kg/m^3$ and $U_{mf}=0.02m/s$. Total bed inventory and static bed height were 75 kg and 0.8 m, respectively. Effect of vertical internal on the bubble rising velocity was investigated. Bubbles were split by internal when the axial position of the internal from the distributor, z = 0.45 m. Bed pressure drop and axial solid holdup were not affected by internal. However, in the case that axial distance of internal from distributor was too close to jet penetration length, bubbles were not separated and bypassed internal, and faster than without internal or z = 0.45 m.

축소 노즐에서의 슬롯 막냉각 열전달 특성에 관한 연구

  • 조용일;조형희
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.33-33
    • /
    • 2000
  • 고온의 연소가스로부터 노즐 표면을 보호하기 위하여 슬롯을 통하여 냉각 유체를 분사하는 슬롯 막냉각에 대하여 연구하였다. 냉각효율 및 열전달 특성은 주유동과 2차 유동의 분사율에 따라 크게 달라지며, 형상변화 및 유동가속에 의해서도 냉각 효과의 변화를 가져오게 된다. 따라서 본 연구에서는 실험을 통하여 면적비가 16:1인 축소노즐에서 압축성 효과를 배제할 수 있는 유동속도 범위 내에서 분사율 변화(0.5 $\leq$ M $\leq$ 3.0)에 따른 슬롯 막냉각 열전달 특성을 고찰하고, 평판 슬롯 막냉각 경험식의 결과와 비교하였으며, 수치해석을 통하여 축소노즐과 원형관에서의 냉각효율 및 열전달 특성을 비교함으로서 이를 검증하였다. 축소노즐에서의 슬롯 막냉각 열전달 특성은 단열벽면조건을 형성하여 노즐 표면을 따라 설치된 열전대를 이용하여 측정하였다. 그 결과 상대적으로 낮은 분사율(M=0.5, 1.0)에서 분사율 증가에 따른 냉각효율의 증가가 크게 나타났으며, 분사율이 높아짐(M $\geq$ 2.0)에 따라 냉각효율의 증가폭이 점점 감소하고, 일정 분사율 이상에서는 냉각 효율의 증가가 크게 둔화되었다. 분사율이 낮을 경우 평판 슬롯 막냉각 경험식으로 주어진 결과보다 상류에서는 높으나 하류로 진행하면 비슷한 냉각효율을 보였고, 분사율이 높은 경우 평판보다 전 범위에서 약간 높은 냉각효율을 나타냈다. 수치해석 결과에서는 분사율이 낮을 경우 축소노즐의 냉각효율이 원형관에서의 냉각효율 보다 낮거나 비슷하게 나타났으며, 분사율이 높아짐에 따라 축소노즐에서의 냉각효율이 오히려 높아지는 것으로 나타났다.타내었다. 액체 제트의 속도는 처음에는 일정하게 유지되다가 운동량을 보존하기 위해 가스로부터 운동량을 받아 점차 가속되어지는 것으로 나타났다.본 규격은 키, 총장, 어깨길이, 등길이, 머리길이, 머리둘레, 진동둘레, 목둘레, 가슴둘레, 허리둘레, 배둘레, 엉덩이둘레, 앞품, 뒤품, drop치를 포함하고 있고, 각 규격에서 호칭간 치수 간격도 함께 제시하고 있다. 본 연구 결과에서 보듯, 현행 8규격의 무진복의 각 호칭간 적정 허용범위를 고려해 합리적인 치수체계를 정립한다면 치수에 대한 적합도가 상당히 증가할 뿐 아니라 생산비용도 상당히 감축할 것으로 생각된다.나타났다. 4) 호감적 서비스능력 차원에서 세 독립변수간에 유의한 3원 상호작용이 존재하는 것으로 나타나( $F_{2,228}$=15.62, P<.001) 20대에 적합한 의복 착용시( $F_{2,228}$=3.98, P<.05)와 60대에 적합한 의복 착용시( $F_{2,228}$=16.55, P<.001) 점포유형과 격식차림간에는 유의한 상호작용이 존재하는 것으로 나타났다. 5) 호감을 구성하는 세 요인들이 구매의도에 미치는 영향을 조사한 결과 호감적 인상차원은 29%(P<.001), 호감적 서비스능력차원은 6%(P<.001)의 구매의도를 설명해 주는 것으로 나타났다. 본 연구결과 노년 소비자에게 호감을 주는 판매원의 외모는 구매의도에 영향을 주어 실버의류산업의 이익증대와 밀접한 연관을 갖는 서비스품질의 중요한 요인으로 밝혀졌다.중요한 요인으로 밝혀졌다.로운 단백질 EPSPS가 다른 여러 식물에 이미 존재하고 있는 단백질로서 우리가 이미 이러

  • PDF

A STUDY ON THE FLOW CHARACTERISTICS OF AIR-KNIFE USING A CONSTANT EXPANSION RATE NOZZLE (팽창률이 일정한 노즐을 사용한 AIR-KNIFE 유동에 관한 연구)

  • Lee, Dong-Won;Kang, Nam-Cheol;Kim, Guen-Young;Kwon, Young-Doo;Kwon, Soon-Bum
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • In the process of continuous hot-dip galvanizing, it is well known that the gas wiping through an air knife system is most effective because of its uniformity in coating thickness, possibility of thin coating, workability in high speed, and simplicity of control. However, gas wiping used in the galvanizing process brings about a problem of splashing at the strip edge above a certain high speed of process. It is also known that the problem of edge splashing is more harmful than that at the mid strip surface. For a given liquid(of a certain viscosity and surface tension), the onset of splashing mainly depends upon the strip velocity, the gas-jet pressure, and the nozzle's stand-off distance. In these connections in the present study, we proposed three kinds of air knife system having nozzles of constant expansion rate, and compared the jet structures issuing from newly proposed nozzle systems with the result by a conventional one. In numerical analysis, the governing equations are consisted of two-dimensional time dependent Navier-Stokes equations, and the standard k-${\varepsilon}$ turbulence model is employed to solve turbulence stress and so on. As the result, it is found that we had better use the constant expansion-rate nozzle which can be interpreted from the point view of the energy saving for the same coating thickness. Also, we better reduce the size of separation bubble and enhance the cutting ability at the strip surface, by using an air-knife having constant expansion-rate nozzle.

An Experimental Study of Film Cooling Characteristics at Supersonic Free Stream Conditions (초음속 주유동 환경에서의 막냉각 특성 시험 연구)

  • Kim, Manshik;Lee, Dong Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.342-348
    • /
    • 2017
  • In this paper, film cooling characteristics at supersonic free stream conditions were examined experimentally by applying an IR-thermography. Film cooling experiments were carried out in a free-jet facility at Mach number of 3.0 and with unit Reynolds number of $42.53{\times}10^6$ and $69.35{\times}10^6$ using wedge shaped film cooling model which has a converging film cooling nozzle. Film cooling efficiency was calculated by measuring the surface temperature of PEEK(Polyether Ether Ketone) and the effects of angle of attack and blowing ratios on the film cooling efficiency were examined. The measured wall temperature was significantly reduced by the film cooling flow compared with the results without the film cooling flow. The usefulness of film cooling was also confirmed by the surface heat flux calculated using the surface temperature history of PEEK. As the blowing ratio increases the protected area of PEEK was also expanded along the direction of free stream and film cooling flow.

Comparison between GOx/Kerosene and GN2O/Ethanol Reactive Spray in a Subscale Liquid Rocket Engine (축소형 액체로켓엔진에서 기체산소/케로신 및 기체아산화질소/에탄올 연소 분무의 비교)

  • Choi, Songyi;Shin, Bongchul;Lee, Keonwoong;Kim, Dohun;Koo, Jaye;Park, Dong-Kun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.61-68
    • /
    • 2015
  • Reactive sprays of two propellant combinations(GOx/kerosene and $GN_2O$/ethanol) were observed and compared with each other as a basic research of visualizing supercritical combustion. A shadowgraph imaging method was used to visualize the reactive sprays, and shadowgraph images were converted to density gradient magnitude images to analyse the structure of reactive sprays. The gas-liquid interface of GOx/kerosene spray showed rougher boundary and steeper density gradient near the injector face than the $N_2O$/ethanol at similar combustion chamber pressure. Spray core length was calculated from averaged density gradient magnitude images and it was revealed that spray core length of GOx/kerosene was shorter than that of $GN_2O$/ethanol, although momentum flux ratio of GOx/kerosene propellant combination was lower.

Starting Transients in Dual-Mode Scramjet Engine (이중 모드 스트램제트 엔진의 시동 천이 과정)

  • Choi, Jeong-Yeol;Noh, Jin-Hyun;Byun, Jong-Ryul;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.981-984
    • /
    • 2011
  • A high-resolution numerical study is carried out to investigate the transient process of the combustion and the shock-train developments in an ethylene-fueled direct-connect dual-mode scramjet combustor. Following the fuel injection, air-throttling is applied at the expansion part of the combustor to provide mass addition to block the flow to subsonic speed. The ignition occurs several ms later when the fuel and air are mixed sufficiently. The pressure build up by the combustion leads to the shock train formation in the isolator section that advances to the exit of the intake nozzle. Then, the air-throttling is deactivated and the exhaust process begins and the situation before the air-throttling is restored. Present simulation shows the detailed processes in the dual-mode scramjet combustor for better understanding of the operation regimes and characteristics.

  • PDF

Characteristics of Supersonic Nozzle and Jet Impingement (초음속 노즐과 벽면 충돌제트의 유동특성)

  • Hong, Seung-Kyu;Lee, Kwang-Seop;Sung, Woong-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.256-262
    • /
    • 2001
  • Viscous solutions of supersonic side jet nozzle and supersonic jet impinging on a flat plate are simulated using three-dimensional Navier-Stokes solver. For rapid and abrupt control of a missile in supersonic flight, side jet on a missile body is found to be a useful devise as evidenced by recent missile development at several nations. The magnitude of the side jet and the duration of it decide the level of control of such a missile system. The aerodynamic characteristics of the side jet devise itself are examined in terms of key parameters such as the side jet nozzle geometry, the chamber pressure and temperature. On the other hand, the jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. As the plate is placed close to the nozzle, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. The amplitude of wall pressure fluctuations subsides as the plate/nozzle distance increases, and the frequency of the wall pressure is estimated on the order of 10.0 KHz. Objectives of this paper are to show accurate simulation of nozzle flow itself and to demonstrate the jet flow structure when the jet interacts with a wall at a close range.

  • PDF

Study on the Design and Operation Characteristics of Ejector System (이젝터 시스템의 설계 및 작동 특성에 관한 연구)

  • NamKoung, Hyuck-Joon;Han, Poong-Gyoo;Kim, Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.627-630
    • /
    • 2009
  • Ejector system can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an configuration and operating conditions for an ejector in the condition of sonic and subsonic. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Numerical simulation was adopted for an optimal geometry design and satisfying the required performance. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF