• Title/Summary/Keyword: 제조공정 오차보상

Search Result 4, Processing Time 0.019 seconds

High-Accuracy Digital-to-Analog Actuators Using Load Springs Compensating Fabrication Errors (제조공정 오차보상용 보정 탄성체를 이용한고정도 디지털-아날로그 구동기)

  • Han, Won;Lee, Won-Chul;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.823-830
    • /
    • 2008
  • We present a high-accuracy digital-to-analog (DA) actuator using a load spring, specially designed to compensate the output displacement errors caused by fabrication errors. The compensated linear DA actuator is capable to change the slope of input-output modulation line in order to compensate fabrication errors. We design, fabricate, and characterize three different prototypes: one uncompensated design and two compensated designs respectively for a specific value and for a given range of fabrication error. The compensated linear DA actuators show the output displacement errors of $-0.20{\pm}0.23{\mu}m\;and\;-0.13{\pm}0.18{\mu}m$, respectively, reduced by 64.3% and 76.8% of the output displacement error, $0.56{\pm}0.20{\mu}m$, produced by the conventional uncompensated linear DA actuator. We experimentally verify the fabrication error compensation capability of the present compensated linear DA actuators, thus demonstrating high-accuracy actuation performance immune to fabrication errors.

Ripple Compensation of Air Bearing Stage upon Gantry Control of Yaw motion (요 모션 갠트리 제어 시 공기베어링 스테이지의 리플 보상)

  • Ahn, Dahoon;Lee, Hakjun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.554-560
    • /
    • 2020
  • In the manufacturing process of flat panel displays, a high-precision planar motion stage is used to position a specimen. Stages of this type typically use frictionless linear motors and air bearings, and laser interferometers. Real-time dynamic correction of the yaw motion error is very important because the inevitable yaw motion error of the stage means a change in the specimen orientation. Gantry control is generally used to compensate for yaw motion errors. Flexure units that allow rotational motion are applied to the stage to apply this method to a stage using an air-bearing guide. This paper proposes a method to improve the constant speed motion performance of a H-type XY stage equipped with air bearing and flexure units. When applying the gantry control to the stage, including the flexure units, the cause of the mutual ripple generated from the linear motors is analyzed, and adaptive learning control is proposed to compensate for the mutual ripple. A simulation was performed to verify the proposed method. The speed ripple was reduced to approximately the 22 % level. The ripple reduction was verified by simulating the stage state where yaw motion error occurs.

Measurement of Cell Gap of Reflective LCD and Study of :Error Rate (반사형 LCD의 Cell Gap 측정 및 오차율 연구)

  • 이서헌;박원상;이기동;김재창;윤태훈
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.142-143
    • /
    • 2001
  • Cell gap은 LCD(Liquid Crystal Display)의 중요한 파라미터들 중의 하나이다. cell gap이 LCD의 광학적인 성능에 영향을 주기 때문에 정확한 cell gap 측정방법은 제조공정을 향상시키는데 중요하다 특히 최근 고속 영상 디스플레이를 제공할 수 있는 장점 때문에 낮은 cell gap의 LCD가 요구되고 있는 시장 추세에 따라 낮은 cell gap을 측정할 수 있는 기술이 요구되고 있다. LCD의 cell gap 측정 방법들 가운데 가장 보편화되어 있는 것으로 회전편광자법(rotating polarizer method)[1, 2]과 위상보상법(phase compensation method)[3,4]을 들 수 있는데 낮은 셀갭을 정확히 측정하기가 어려우며 주기적인 해가 발생한다는 단점이 있다. (중략)

  • PDF

Polarization Analysis of Composite Optical Films for Viewing Angle Improvement of Liquid Crystal Display (액정 디스플레이 시야각 향상을 위한 복합판의 편광특성 분석)

  • Ryu, Jang-Wi;Kim, Sang-Youl;Kim, Yong-Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.4
    • /
    • pp.241-248
    • /
    • 2009
  • We suggest a new method to determine the off-alignment error of the composite film, together with in-plane($R_{in}$) and out-of-plane retardation($R_{th}$) of the compensation film, simultaneously. The composite film consists of a polarizing film and a compensation film for improvement of viewing angle of a liquid crystal display. We regarded the compensation film as o-plate with its optic axis along an arbitrary direction. By using an extended Jones matrix method, the polarization characteristics of the composite film are examined. The calculated Fourier constants, ($\alpha$, $\beta$) curves of the composite film as the azimuth angle is varied at the incident angles of $0^{\circ}$ and $50^{\circ}$, respectively, are used to determine the axis misalignment, the tilt angle and the azimuth angle of the compensation film by adopting the linear regressional analysis technique. Since this method can be applied for the inspection of the composite film even after laminating the polarizing film and the compensation film, it will be useful for simplifying the manufacturing process and reducing the production cost of liquid crystal display panels.