• Title/Summary/Keyword: 제자리 비행성능

Search Result 33, Processing Time 0.024 seconds

Prediction and Verification of Hover Performance through Multi-Copter Propulsion System Test Results (멀티콥터의 추진 시스템 실험 결과를 통한 제자리 비행 성능 예측 및 검증)

  • Park, Seungho;Go, Yeong-Ju;Ryi, Jaeha;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.527-534
    • /
    • 2018
  • The endurance of the multi-copter is one of the important variables that determine the mission performance. Therefore, accurate endurance should be defined as essential for performing effective missions. In this paper, we present the results of the study on the flight performance of the aircraft, especially the hovering of the drone(multi-copter). Unlike conventional aircraft, which consider aerodynamic performance by the fuselage, the multi-copter is mostly determined by the propulsion system. Therefore, the research method classifies the various parts constituting the drone system into functions, analyzes the performance of the unit parts and obtains the experimental data by sorting out the specifications and functions at the component level and mathematical formulation, The results of this study are as follows. In addition, the 5kg class quad copter was used to predict and verify the voltage change with endurance through analysis of in situ flight. By predicting endurance under various conditions, it can help design/build the right Multi-copter for mission.

Development and Verification of Small-Scale Rotor Hover Performance Test-stand (소형 로터 블레이드의 제자리 비행 성능 시험장치 개발 및 검증)

  • Lee, Byoung-Eon;Seo, Jin-Woo;Byun, Young-Seop;Kim, Jeong;Yee, Kwan-Jung;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.975-983
    • /
    • 2009
  • This paper presents the work being carried out in order to deduce hover performance of a small-scale single rotor blade as a preliminary study of a small coaxial rotor helicopter development. As an initial research, a test stand capable of measuring thrust and torque of a small-scale rotor blade in hover state was constructed and fabricated. The test stand consists of three parts; a rotating device, a load measuring sensor and a data acquisition system. Thrust and torque were measured with varying collective pitch angle at fixed RPM. Through this research, hover performance tests were conducted for a small-scale single rotor blade operating in low Reynolds number ($Re\;{\approx}3{\times}10^5$), as well as for verifying the test stand itself for acquiring hover performance.

Development of Coaxial Propeller Test Facility and Experimental Study on Hover Performance Characteristics for Drone (드론용 동축 프로펠러 시험장치 개발 및 제자리비행 성능특성에 대한 실험적 연구)

  • Song, Youn-Ha;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.59-67
    • /
    • 2018
  • In this paper, the test facility for coaxial propellers at low Reynolds developed and validated by measured data. The test equipment was designed to measure the hovering performance of propellers according to distances between the upper/lower propellers. Thrust, torque, rotational speed, vibration, and amperage of upper and lower propellers can be measured separately. The data acquisition system was built to collect signals of sensors, and LabVIEW software was used to control the motor and collect the signal. The hover performance tests of single propellers were preceded for the facility validation, and then the performance values of coaxial propellers were measured according to distances and diameter differences between the upper/lower propellers. The results showed that the high efficiency is achieved at 20%~30% distance between the upper propeller and lower one. The configuration that the upper propeller has shorter diameter than the lower one has the highest efficiency than other configuration.

CFD-based Thrust Analysis of Unmanned Aerial Vehicle in Hover Mode: Effects of Single Rotor Blade Shape (무인비행체 블레이드 형상 변화에 따른 단일로터의 제자리 비행 추력성능 분석)

  • Yun, Jae Hyun;Choi, Ha-Young;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.513-520
    • /
    • 2014
  • An unmanned aerial vehicle (UAV) should be designed to be as small and lightweight as possible to optimize the efficiency of changing the blade shape to enhance the aerodynamic performance, such as the thrust and power. In this study, a computational fluid dynamics (CFD) simulation of an unmanned multi-rotor aerial vehicle in hover mode was performed to explore the thrust performance in terms of the blade rotational speed and blade shape parameters (i.e., taper ratio and twist angle). The commercial ADINA-CFD program was used to generate the CFD data, and the results were compared with those obtained from blade element theory (BET). The results showed that changes in the blade shape clearly affect the aerodynamic thrust of a UAV rotor blade.

Numerical Evaluation of Hovering Performance of Next Generation Rotor Blade(Nrsb-1) (차세대 로터 블레이드(NRSB-1)의 제자리 비행 성능 해석)

  • Lee,Gwan-Jung;Hwang,Chang-Jeon;Kim,Jae-Mu;Ju,Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.69-74
    • /
    • 2003
  • By employing vane tip concept, a new rotor blade (NRSB-I) has been designed to enhance the noise characteristics of BERP blade. Numerical analyses have been performed for hovering rotor and the results are compared with respect to those of original BERP blade. Although the thrust of designed rotor decreases by 6-7% due to cutout at the tip region, the results indicate that the actual performance loss is negligible because power reduction is greater than thrust loss. It is also found that aerodynamic fence is required at the outboard kink to obtain clearly separated twin-vortices because the vortex generated at kink is diffused during the convection over the blade surface.

Developed a test rig for studying the hover performance of a coaxial propeller (동축반전 프로펠러의 제자리 비행 성능연구를 위한 시험장치 개발)

  • Song, Youn-Ha;Song, Jae-Rim;Kim, Deog-Kowan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.560-562
    • /
    • 2017
  • This paper presents the development and test results of a test rig for confirming the hover performance of the coaxial propeller which is applied to the drone in order to carry out the mission that requires high payload such as the development of the courier drones. the performance of each propeller was measured by varying the thrust and torque according to the H/D ratio. the Thrust sensor and torque sensor were used to measure the thrust and torque generated when the propeller rotated, and a photo sensor was used to measure the rpm. it used the data acquisition system to acquire data from each sensor, and used the Labview softwaer to control data storage, monitoring and BLDC motor control. In the test, each propeller meansured the figure of mefit according to the chansge of the interval at the same rpm.

  • PDF

A Study on Hovering Performance of Ducted Fan System Through Ground Tests and CFD Simulations (지상 시험과 CFD 시뮬레이션을 통한 덕티드 팬 시스템의 제자리 비행 성능 연구)

  • Choi, Young Jae;Wie, Seong-Yong;Yoon, Byung Il;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.399-405
    • /
    • 2021
  • In the present study, ground tests and CFD simulations for a ducted fan system were performed to verify the hovering performance of the ducted fan system designed by KARI rotorcraft team. Six blades were composed for the ducted fan, and target rotating speed of the fan was decided to 4,000 RPM. Collective pitch angles were considered from 20 degrees to 36 degrees. The test data were obtained by increasing the rotating speed up to 4,000 RPM in 1,000 RPM increments. The CFD simulations were considered only 4,000 RPM of rotating speed. The hovering performance was represented by thrust, power, duct thrust ratio, and FM(Figure of Merit). Reliability of the performance results was ensured through the test and simulation results, and it was found that the target performance was achieved under conditions above 31 degrees of the pitch angle.

Numerical Study on Aerodynamic Performance of Counter-rotating Propeller in Hover Using Actuator Method (Actuator 기법을 이용한 제자리 비행하는 동축 반전 프로펠러 공력 성능에 관한 수치적 연구)

  • Kim, Dahye;Park, Youngmin;Oh, Sejong;Park, Donghun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.30-44
    • /
    • 2021
  • Experimental investigation of counter-rotating propellers is subject to multiple time and cost constraint because of additional design parameters unlike single propeller. Also, a lot of computing time and resources are required for numerical analysis due to consideration of the interference between the upper and lower propellers. In the present study, numerical simulations were conducted to investigate the hover performance of counter-rotating propellers by using actuator method which is considered to be time-efficient. The accuracy of the present numerical methods was validated by comparing the ANSYS Fluent which is commercial CFD code. The axial spacing and rotational speed were selected as the analysis variables, and the aerodynamic performance was obtained under various conditions. Based on the obtained results, the Figure of Merit (FM) of single propeller and counter-rotating propellers and a prediction factor which enables prediction of counter-rotating propeller performance using a single propeller were derived to evaluate availability of the actuator method.

The Aerodynamic Analysis of Helicopter Rotors by Using an Unsteady Source-Doublet Panel Method (비정상 Source-Doublet 패널 기법을 이용한 헬리콥터 로터 공력 해석)

  • 이재원;오세종;이관중
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.1-9
    • /
    • 2006
  • 본 연구의 목적은 여러 가지 비행 모드 상의 로터 성능을 효율적으로 예측하는 것이다. 헬리콥터의 공력 특성을 예측하기 위한 비정상 source-doublet 패널 기법 기반의 수치 기법을 개발하였다. 후류의 형상 예측에는 시간 전진 자유후류모델이 사용되었다. 점성에 의한 확산을 고려한 후류의 roll-up 모사를 위하여 후류의 doublet 패널은 같은 강도의 와류고리로 대체하여 계산하였다. 후류와 양력면의 충돌 문제는 표면격자 내부에 들어간 와류고리의 포텐셜값을 제거하여 해결하였다. 제자리비행의 해석 시에 나타나는 와류 불안정성의 해결에는 slow starting과 vortex core growth 모델을 사용하였다. 로터 공력 해석 프로그램은 제자리비행과 전진비행에 대한 실험 결과와 비교하여 검증하였으며, 실험치와 일치하는 결과를 얻을 수 있었다.

Study on Performance Analyses on Coaxial Co-rotating Rotors of e-VTOL Aircraft for Urban Air Mobility (도심 항공 교통을 위한 전기동력 수직 이착륙기의 동축 동회전 로터의 성능해석 연구)

  • Lee, Yu-Been;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.1011-1018
    • /
    • 2021
  • This numerical study conducts the modeling and the hover performance analyses of coaxial co-rotating rotor(or stacked rotor), using a rotorcraft comprehensive analysis code, CAMRAD II. The important design parameters such as the index angle and axial spacing for the coaxial co-rotating rotor are varied in this simulation study. The coaxial co-rotating rotor is trimmed using the torque value of the upper rotor of the previous coaxial counter-rotating rotor or the total thrust value of the previous coaxial counter-rotating rotor in hover. The maximum increases in the rotor thrust is 1.84% for the index angle of -10° when using the torque trim approach. In addition, the maximum decreases in the rotor power is 4.53% for the index angle of 20° with the thrust trim method. Thus, the present study shows that the hover performance of the coaxial co-rotating rotor for e-VTOL aircraft can be changed by the index angle.