• Title/Summary/Keyword: 제어 패킷

Search Result 986, Processing Time 0.023 seconds

Congestion Control Algorithms Evaluation of TCP Linux Variants in Dumbbell (덤벨 네트워크에서 TCP 리눅스 변종의 혼잡 제어 알고리즘 평가)

  • Mateen, Ahamed;Zaman, Muhanmmad
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.139-145
    • /
    • 2016
  • Dumbbell is the most basic topology that can be used in almost all kind of network experiment within it or just by little expansion. While Transmission Control Protocol TCP is the basic protocol that is used for the connectivity among networks and stations. TCP major and basic goal is to provide path and services to different applications for communication. For that reason TCP has to transfer a lot of data through a communication medium that cause serious congestion problem. To calculate the congestion problem, different kind of pre-cure solutions are developer which are Loss Based Variant and Delay Based Variant. While LBV keep track of the data that is going to be passed through TCP protocol, if the data packets start dropping that means congestion occurrence which notify as a symptom, TCP CUBIC use LBV for notifying the loss. Similarly the DBV work with the acknowledgment procedure that is used in when data ACK get late with respect to its set data rate time, TCP COMPOUND/VAGAS are examples of DBV. Many algorithms have been purposed to control the congestion in different TCP variants but the loss of data packets did not completely controlled. In this paper, the congestion control algorithms are implemented and corresponding results are analyzed in Dumbbell topology, it is typically used to analyze the TCP traffic flows. Fairness of throughput is evaluated for different TCP variants using network simulator (NS-2).

An Admission Control Mechanism to guarantee QoS of Streaming Service in WLAN (WLAN에서 스트리밍 서비스의 QoS를 보장하기 위한 승인 제어 기술)

  • Kang, Seok-Won;Lee, Hyun-Jin;Lee, Kyu-Hwan;Kim, Jae-Hyun;Roh, Byeong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6B
    • /
    • pp.595-604
    • /
    • 2009
  • The HCCA reserves the channel resources based on the mean data rate in IEEE 802.11e. It may cause either the waste of channel resource or the increase of transmission delay at MAC layer if the frame size is rapidly varied when a compressed mode video codec such as MPEG video is used. To solve these problems, it is developed that the packet scheduler allocates the wireless resource adaptation by according to the packet size. However, it is difficult to perform the admission control because of the difficulty with calculating the available resources. In this paper, we propose a CAC mechanism to solve the problem that may not satisfy the QoS by increasing traffic load in case of using EDCA. Especially, the proposed CAC mechanism calculates the EB of TSs using the traffic information transmitted by the application layer and the number of average transmission according to the wireless channel environment, and then determines the admission of the TS based on the EB. According to the simulation results of the proposed CAC mechanism, it admitted the TSs under the loads which are satisfied within the delay bound. Therefore, the proposed mechanism guarantees QoS of streaming services effectively.

Scheduling for Guaranteeing QoS of Continuous Multimedia Traffic (연속적 멀티미디어 트래픽의 서비스 질 보장을 위한 스케쥴링)

  • 길아라
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.1
    • /
    • pp.22-32
    • /
    • 2003
  • Many of multimedia applications in distributed environments generate the packets which have the real-time characteristics for continuous audio/video data and transmit them according to the teal-time task scheduling theories. In this paper, we model the traffic for continuous media in the distributed multimedia applications based on the high-bandwidth networks and introduce the PDMA algorithm which is the hard real-time task scheduling theory for guaranteeing QoS requested by the clients. Furthermore, we propose the admission control to control the new request not to interfere the current services for maintaining the high quality of services of the applications. Since the proposed admission control is sufficient for the PDMA algorithm, the PDMA algorithm is always able to find the feasible schedule for the set of messages which satisfies it. Therefore, if the set of messages including the new request to generate the new traffic. Otherwise, it rejects the new request. In final, we present the simulation results for showing that the scheduling with the proposed admission control is of practical use.

Design and Implementation of Video Streaming Service Quality Control System through Available Bandwidth Management (가용대역폭 관리를 통한 영상 스트리밍 서비스 품질 제어 시스템 설계 및 구현)

  • Lee, In-Sun;Kim, Hyun-Jong;Choi, Seong-Gon
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.36-44
    • /
    • 2010
  • In this paper, we propose video quality control system(VQCS) which can control video service quality through the monitoring of end-to-end available bandwidth for video streaming service like IPTV in NGN convergence network. Various multimedia services such as video, voice and gaming service can be provided by IPTV, and these services require large amounts of bandwidth. At this time, video quality degradation like video jerkiness, block distortion and blurring is caused when network available bandwidth is insufficient. Available bandwidth monitoring method is need to stably control video streaming quality. So, we periodically calculate the amount of the packets in link and measure available bandwidth by using total length field in IP header at terminal. Scalability extractor in network selects suitable video streaming data rate based on available bandwidth and transports video streaming with adaptive data rate to prevent video quality deterioration.

A traffic control system to manage bandwidth usage in IP networks supporting Differentiated Service (차별화서비스를 제공하는 IP네트워크에서 대역폭관리를 위한 트래픽 제어시스템)

  • 이명섭;박창현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3B
    • /
    • pp.325-338
    • /
    • 2004
  • As the recent rapid development of internet technology and the wide spread of multimedia communication, massive increase of network traffic causes some problems such as the lack of network paths and the bad quality of service. To resolve these problems, this paper presents a traffic control agent that can perform the dynamic resource allocation by controlling traffic flows on a DiffServ network. In addition, this paper presents a router that can support DiffServ on Linux to support selective QoS in IP network environment. To implement a method for selective traffic transmission based on priority on a DiffServ router, this paper changes the queuing discipline in Linux, and presents the traffic control agent so that it can efficiently control routers, efficiently allocates network resources according to service requests, and relocate resources in response to state changes of the network. Particularly for the efficient processing of Assured Forwarding(AF) Per Hop Behavior(PHB), this paper proposes an ACWF$^2$Q$^{+}$ packet scheduler on a DiffServ router to enhance the throughput of packet transmission and the fairness of traffic services.s.

Delay Control using Fast TCP Prototype in Internet Communication (인터넷 통신에서 고속 TCP 프로토타입을 이용한 지연 제어)

  • 나하선;김광준;나상동
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1194-1201
    • /
    • 2003
  • Measurements of network traffic have shown that self-similarity is a ubiquitous phenomenon spanning across diverse network environments. We have advance the framework of multiple time scale congestion control and show its effectiveness at enhancing performance for fast TCP prototype control. In this paper, we extend the fast TCP prototype control framework to window-based congestion control, in particular, TCP. This is performed by interfacing TCP with a large time scale control module which adjusts the aggressiveness of bandwidth consumption behavior exhibited by TCP as a function of "large time scale" network state. i.e., conformation that exceeds the horizon of the feedback loop as determined by RTT. Performance evaluation of fast TCP prototype is facilitated by a simulation bench-mark environment which is based on physical modeling of self-similar traffic. We explicate out methodology for discerning and evaluating the impact of changes in transport protocols in the protocol stack under self-similar traffic conditions. We discuss issues arising in comparative performance evaluation under heavy-tailed workload. workload.

Analysis of WLAN Performance Depending on ARF Scheme with TCP and UDP Protocols (TCP와 UDP 프로토콜 상에서 ARF 기법에 따른 무선랜 성능 분석)

  • Kim Namgi;Lee Min;Yoon Hyunsoo
    • The KIPS Transactions:PartC
    • /
    • v.12C no.3 s.99
    • /
    • pp.395-400
    • /
    • 2005
  • The IEEE 802.11b WLAN supports multiple transmission rates and the rate is chosen in an adaptive manner by an auto rate control algorithm. This auto rate control algorithm deeply affects the total system performance of the IEEE 802.11b WLAN. In this paper, we examine the WLAN performance with regard to the auto rate control algorithm especially the ARF scheme. The experimental results indicate that the ARF scheme works well in the face of signal noise due to node location. However, the ARF scheme severely degrades system performance when multiple nodes contend to obtain the wireless channel and the packet is lost due to signal collision. In addition, TCP prevent the performance degradation due to ARF scheme by retaining number of active nodes. However, some applications, such as transporting multimedia data, adopt the UDP. Therefore, the TCP cannot be an optimal solution for all WLAN applications.

Transmission Rate Priority-based Traffic Control for Contents Streaming in Wireless Sensor Networks (무선 센서 네트워크에서 콘텐츠 스트리밍을 위한 전송율 우선순위 기반 트래픽제어)

  • Lee, Chong-Deuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3176-3183
    • /
    • 2011
  • Traffic and congestion control in the wireless sensor network is an important parameter that decides the throughput and QoS (Quality of Service). This paper proposes a transmission rate priority-based traffic control scheme to serve digital contents streaming in wireless sensor networks. In this paper, priority for transmission rate decides on the real-time traffic and non-real-time with burst time and length. This transmission rate-based priority creates low latency and high reliability so that traffic can be efficiently controlled when needed. Traffic control in this paper performs the service differentiation via traffic detection process, traffic notification process and traffic adjustment. The simulation results show that the proposed scheme achieves improved performance in delay rate, packet loss rate and throughput compared with those of other existing CCF and WCA.

Implementation of an Integrated Access Control Rule Script Language and Graphical User Interface for Hybrid Firewalls (혼합형 침입차단시스템을 위한 통합 접근제어 규칙기술 언어 및 그래픽 사용자 인터페이스 구현)

  • 박찬정
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.1
    • /
    • pp.57-70
    • /
    • 1999
  • Since a hybrid firewall filters packets at a network layer along with providing gateway functionalities at an application layer, it has a better performance than an If filtering firewall. In addition, it provides both the various kinds of access control mechanisms and transparent services to users. However, the security policies of a network layer are different from those of an application layer. Thus, the user interfaces for managing a hybrid firewalls in a consistent manner are needed. In this paper, we implement a graphical user interface to provide access control mechanisms and management facilities for a hybrid firewall such as log analysis, a real-time monitor for network traffics, and the statisics on traffics. And we also propose a new rule script language for specifying access control rules. By using the script language, users can generate the various forma of access control rules which are adapted by the existing firewalls.

WAVE Packet Transmission Method for Railroad WAVE Communication (철도 WAVE 통신을 위한 WAVE 패킷 전송방법)

  • Cho, Bong-Kwan;Ryu, Sang-Hwan;Kim, Keum-Bee;Kim, Ronny Yongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6604-6610
    • /
    • 2015
  • In this paper, an efficient Wireless Access in Vehicular Environment (WAVE) packet transmission scheme for railroad communication is proposed. WAVE communication is a wireless local area network (WLAN) based communication and it is developed to be suitable for vehicular communication. There has been a lot of study on WAVE's applicability to Intelligent Transport System (ITS). As one of main transportation methods, by using WAVE, quality of railroad communication including WLAN based Communication Based Train Control (CBTC) can be enhanced and variety of railroad communication systems can be integrated into WAVE. However, there are technical challenges to adopt WAVE in railroad communications. For the simplest single-PHY WAVE, time division alternation of 50ms between Control Channel (CCH) and Service Channel (SCH) is required. Since there are delay sensitive railroad traffic types, alternation operation of CCH and SCH may cause performance degradation. In this paper, after identifying a couple of problems based on detailed analysis, a novel packet transmission scheme under railroad environment is proposed. In order to verify if the proposed scheme meets the requirement of railroad communication, WAVE transmission is mathematically modeled.