• Title/Summary/Keyword: 제어 적합성

Search Result 938, Processing Time 0.035 seconds

A Study on the Build of Equipment Predictive Maintenance Solutions Based on On-device Edge Computer

  • Lee, Yong-Hwan;Suh, Jin-Hyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.165-172
    • /
    • 2020
  • In this paper we propose an uses on-device-based edge computing technology and big data analysis methods through the use of on-device-based edge computing technology and analysis of big data, which are distributed computing paradigms that introduce computations and storage devices where necessary to solve problems such as transmission delays that occur when data is transmitted to central centers and processed in current general smart factories. However, even if edge computing-based technology is applied in practice, the increase in devices on the network edge will result in large amounts of data being transferred to the data center, resulting in the network band reaching its limits, which, despite the improvement of network technology, does not guarantee acceptable transfer speeds and response times, which are critical requirements for many applications. It provides the basis for developing into an AI-based facility prediction conservation analysis tool that can apply deep learning suitable for big data in the future by supporting intelligent facility management that can support productivity growth through research that can be applied to the field of facility preservation and smart factory industry with integrated hardware technology that can accommodate these requirements and factory management and control technology.

ICT Convergenced Cascade-type Incubator for mass production of microalgae (미세조류 대량생산을 위한 ICT 융합 계단식 연속 배양 장치)

  • Lee, Geon Woo;Lee, Yong Bok;Yoo, Yong Jin;Baek, Dong Hyun;Kim, Jin Woo;Kim, Ho Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.379-386
    • /
    • 2021
  • This study was undertaken to develop a cascade-type continuous culture system (CCCS) that combines both ICT and biotechnology (BT), for the mass production of microalgae. This system is capable of maintaining the essential culture conditions of pH, temperature, carbon dioxide, and illuminance control, which are key parameters for the growth of microalgae, and is economical for producing microalgae regardless of the season or location. It has the added advantage of providing stable and high productivity. In the current study, this system was applied to culture microalgae for 71 days, with subsequent analysis of the experimental data. The initial O.D. of the culture measured from incubator 1 was 0.006. On the 71st day of culture, the O.D.s obtained were 0.399 (incubator 1), 0.961 (incubator 2), 0.795 (incubator 3), and 0.438 (incubator 4), thereby confirming the establishment of continuous culture. Thus, we present a smart-farm based on ISMC (in-situ monitoring and control) for a mass culture method. We believe that this developed technology is suitable for commercialization, and has the potential to be applied to hydroponics-based cultivation of microalgae and cultivation of high-value-added medicinal plants as well as other plants used in functional foods, cosmetics, and medical materials.

433 MHz Radio Frequency and 2G based Smart Irrigation Monitoring System (433 MHz 무선주파수와 2G 통신 기반의 스마트 관개 모니터링 시스템)

  • Manongi, Frank Andrew;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.136-145
    • /
    • 2020
  • Agriculture is the backbone of the economy of most developing countries. In these countries, agriculture or farming is mostly done manually with little integration of machinery, intelligent systems and data monitoring. Irrigation is an essential process that directly influences crop production. The fluctuating amount of rainfall per year has led to the adoption of irrigation systems in most farms. The absence of smart sensors, monitoring methods and control, has led to low harvests and draining water sources. In this research paper, we introduce a 433 MHz Radio Frequency and 2G based Smart Irrigation Meter System and a water prepayment system for rural areas of Tanzania with no reliable internet coverage. Specifically, Ngurudoto area in Arusha region where it will be used as a case study for data collection. The proposed system is hybrid, comprising of both weather data (evapotranspiration) and soil moisture data. The architecture of the system has on-site weather measurement controllers, soil moisture sensors buried on the ground, water flow sensors, a solenoid valve, and a prepayment system. To achieve high precision in linear and nonlinear regression and to improve classification and prediction, this work cascades a Dynamic Regression Algorithm and Naïve Bayes algorithm.

Research to Predict the Thermal Characteristics of Electro Hydrostatic Actuator for Aircraft (항공기용 전기-정유압식 작동기(Dual Redundant Asymmetric Tandem EHA)의 열특성 예측을 위한 연구)

  • Kim, Sang Seok;Park, Hyung Jun;Kim, Daeyeon;Kim, Dae Hyun;Kim, Sang Beom;Lee, Junwon;Choi, Jong Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.84-92
    • /
    • 2022
  • The electro-hydrostatic actuator (EHA) recently has been used in flight control fields for aircraft because of its benefits of minimizing oil leakage and weight, improving safety, and etc. while independently operating the hydraulic power source and eliminating complex hydraulic piping. The aircraft of which EHA is installed inside, has the thermal management issue of EHA, because of its limited cooling source as compared with the aircraft which installs the traditional central hydraulic system. So, the thermal analysis model which predicts the thermal characteristics of EHA, is required to resolve this thermal management issue. In this study, an oil circulation circuit inside the hydraulic power module comprised of hydraulic pump and electrical motor for EHA was applied. This is for the purpose of developing the internal rotary group of hydraulic power module, which operates under the conditions of high rotation speed and hydraulic pressure. After formulating an appropriate thermal analysis model, the thermal analysis results with oil cooled or no oil cooled hydraulic control module were compared and reviewed, for the purpose of predicting the thermal characteristics of EHA.

A Study on Performance Evaluation of Light Shelf according to the Reflectivity of Interior Space (실내 공간의 반사율에 따른 광선반 성능평가 연구)

  • Jeon, Gangmin;Lee, Heangwoo;Kim, Yongseong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.5
    • /
    • pp.461-470
    • /
    • 2015
  • There has been a significant increase in the amount of research on reducing the lighting power consumption of buildings and also an increasing demand for technological development. Light shelf has been recognized as one of the most efficient solutions to this issue and related researches have been conducted, which have mostly focused on factors related to simple light shelves and are not suitable as an appropriate basis for the design of light shelves. Thus this study aims to establish the proper design basis for light shelves by evaluating the performance of shelves per reflection rate in indoor areas. Power consumption rate and indoor illumination intensity distribution of a testbed built based on actual living conditions were calculated for the performance evaluation, of which the results are as following: 1) Reduction of reflection rate of ceiling and walls caused average illumination intensity in summer, winter and median seasons, and evenness per reflection rate of indoor areas was found to be different in summer, winter and median seasons, making it a necessary consideration for designing light shelves. 2) Calculation of power consumption from lighting control showed that a high reflection rate of indoor areas may be suitable for power consumption reduction, and that reflection rates higher than 80% for ceilings and higher than 75% for walls in terms of the efficiency of researches on the indoor reflection rate and its application would be appropriate. This study is meaningful as the research focuses on light shelves based on considering indoor environmental factors. More studies will be required that consider a variety of factors.

A Study on the Extraction of Psychological Distance Embedded in Company's SNS Messages Using Machine Learning (머신 러닝을 활용한 회사 SNS 메시지에 내포된 심리적 거리 추출 연구)

  • Seongwon Lee;Jin Hyuk Kim
    • Information Systems Review
    • /
    • v.21 no.1
    • /
    • pp.23-38
    • /
    • 2019
  • The social network service (SNS) is one of the important marketing channels, so many companies actively exploit SNSs by posting SNS messages with appropriate content and style for their customers. In this paper, we focused on the psychological distances embedded in the SNS messages and developed a method to measure the psychological distance in SNS message by mixing a traditional content analysis, natural language processing (NLP), and machine learning. Through a traditional content analysis by human coding, the psychological distance was extracted from the SNS message, and these coding results were used for input data for NLP and machine learning. With NLP, word embedding was executed and Bag of Word was created. The Support Vector Machine, one of machine learning techniques was performed to train and test the psychological distance in SNS message. As a result, sensitivity and precision of SVM prediction were significantly low because of the extreme skewness of dataset. We improved the performance of SVM by balancing the ratio of data by upsampling technique and using data coded with the same value in first content analysis. All performance index was more than 70%, which showed that psychological distance can be measured well.

Parotid Gland Tumors (이하선종양에 대한 임상적고찰)

  • 박혁동;심윤상;오경균;이용식
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1993.05a
    • /
    • pp.97-97
    • /
    • 1993
  • Primary tumor arises infrequently in the parotid gland and generally, only about 20 to 40 percent of which prove to be malignant. They are characterized by histopathologic diversity, slow tumor growth, significant proportion of patients who have received previous treatment elsewhere. We have reviewed retrospectively 101 cases of parotid gland tumors which were treated for the recent eight years (1985-1992), Non-neoplastic tumor-like lesions were all excluded.

  • PDF

Production of Pyruvate Dehydrogenase Complex-E2 Specific Human Monoclonal Antibody in Fed-batch Culture Systems with High Cell Density Recombinant Escherichia coli (고농도 재조합 대장균의 Fed-batch 배양 시스템을 이용한 Pyruvate Dehydrogenase Complex-E2 특이성 인간 모노클론 항체의 생산)

  • 이미숙;전주미;차상훈;정연호
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.489-496
    • /
    • 2000
  • Several culture systems including batch, two-stage CSTR, semi-fed batch, and two-stage cyclic fed-batch were investigated for the efficient production of the Fab fraction of PDC-E2 specific human monoclonal antibody using high cell density recombinant E. coli. A two-phase batch system and a two-stage continuous system were examined to overcome plasmid instability problems, by separating the growth and the production stages. The cell density and productivity of the two-stage continuous culture was better than that of the two-phase batch fermentation. In the two-stage continuous culture system with DO-stat, the cell growth and the productivity were superior to those of the system without the DO control. Also, almost total plasmid stability was maintained in the two-stage continuous culture system. Modified M9 medium was selected as an optimum feeding medium for the fed-batch process, and the optimum C/N ratio determined to be 2:3. The optimum feeding rate was $0.6g/\ell/hr$ for a constant feeding strategy in semi-fed batch system. When the feeding medium was fed by pulsing, it was observed that more frequent pulsing resulted in improved cell growth. The linear feeding method was the most efficient of the various feeding methods tested. Finally, high cell density culture using a two-stage cyclic fed batch system with pH-stat was tried because the linear feeding method showed limitations in terms of obtaining high cell densities, and a cell density of $54 g/\ell$ was achieved. It was concluded that the two-stage cyclic fed batch system was the most efficient system for high cell density culture of the systems tested. However, productivity improvements were lower than expected due to the extremely high accumulations of acetate, although the low levels of residual glucose were maintained.

  • PDF

Improvement of Energy Efficiency of Plants Factory by Arranging Air Circulation Fan and Air Flow Control Based on CFD (CFD 기반의 순환 팬 배치 및 유속조절에 의한 식물공장의 에너지 효율 향상)

  • Moon, Seung-Mi;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2015
  • As information technology fusion is accelerated, the researches to improve the quality and productivity of crops inside a plant factory actively progress. Advanced growth environment management technology that can provide thermal environment and air flow suited to the growth of crops and considering the characteristics inside a facility is necessary to maximize productivity inside a plant factory. Currently running plant factories are designed to rely on experience or personal judgment; hence, design and operation technology specific to plant factories are not established, inherently producing problems such as uneven crop production due to the deviation of temperature and air flow and additional increases in energy consumption after prolonged cultivation. The optimization process has to be set up in advance for the arrangement of air flow devices and operation technology using computational fluid dynamics (CFD) during the design stage of a facility for plant factories to resolve the problems. In this study, the optimum arrangement and air flow of air circulation fans were investigated to save energy while minimizing temperature deviation at each point inside a plant factory using CFD. The condition for simulation was categorized into a total of 12 types according to installation location, quantity, and air flow changes in air circulation fans. Also, the variables of boundary conditions for simulation were set in the same level. The analysis results for each case showed that an average temperature of 296.33K matching with a set temperature and average air flow velocity of 0.51m/s suiting plant growth were well-maintained under Case 4 condition wherein two sets of air circulation fans were installed at the upper part of plant cultivation beds. Further, control of air circulation fan set under Case D yielded the most excellent results from Case D-3 conditions wherein air velocity at the outlet was adjusted to 2.9m/s.

Optimization for Underwater Welding of Marine Steel Plates (선박용 강판의 수중 용접 최적화에 관한 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 1984
  • Optimizing investigation of characteristics of underwater welding by a gravity type arc welding process was experimentally carried out by using six types of domestic coated welding electrodes for welding of domestic marine structural steel plates (KR Grade A-1, SWS41A, SWS41B,) in order to develop the underwater welding techniques in practical use. Main results obtained are summarized as follows: 1. The absorption speed of the coating of domestic coated lime titania type welding-electrode became constant at about 60 minutes in water and it was about 0.18%/min during initial 8 minutes of absorption time. 2. Thus, the immediate welding electrode could be used in underwater welding for such a short time in comparison with the joint strength of in-atmosphere-and on-water-welding by dry-, wet-or immediate-welding-electrode. 3. By bead appearance and X-ray inspection, ilmenite, limetitania and high titanium oxide types of electrodes were found better for underwater-welding of 10 mm KR Grade A-1 steel plates, while proper welding angle, current and electrode diameter were 6$0^{\circ}C$, above 160A and 4mm respectively under 28cm/min of welding speed. 4. The weld metal tensile strength or proof stress of underwater-welded-joints has a quadratic relationship with the heat input, and the optimal heat input zone is about 13 to 15KJ/cm for 10mm SWS41A steel plates, resulting from consideration upon both joint efficiency of above-100% and recovery of impact strength and strain. Meanwhile, the optimal heat input zone resulting from tension-tension fatigue limit above the base metal's of SWS41A plates is 16 to 19KJ/cm. Reliability of all the empirical equations reveals 95% confidence level. 6. The microstructure of the underwater welds of SES41A welded in such a zone has no weld defects such as hydrogen brittleness with supreme high hardness, since the HAZ-bond boundary area adjacent to both surface and base metal has only Hv400 max with the microstructure of fine martensite, bainite, pearlite and small amount of ferrite.

  • PDF