• Title/Summary/Keyword: 제목

Search Result 662, Processing Time 0.03 seconds

제목없음

  • 이남용
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04d
    • /
    • pp.91-106
    • /
    • 2000
  • PDF

Inferring Disease-related Genes using Title and Body in Biomedical Text (생물학 문헌 데이터의 제목과 본문을 이용한 질병 관련 유전자 추론 방법)

  • Kim, Jeongwoo;Kim, Hyunjin;Yeo, Yunku;Shin, Mincheol;Park, Sanghyun
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.1
    • /
    • pp.28-36
    • /
    • 2017
  • After the genome projects of the 90s, a vast number of gene studies have been stored in online databases. By using these databases, several biological relationships can be inferred. In this study, we proposed a method to infer disease-gene relationships using title and body in biomedical text. The title was used to extract hub genes from data in the literature; whereas, the body of the literature was used to extract sub genes that are related to hub genes. Through these steps, we were able to construct a local gene-network for each report in the literature. By integrating the local gene-networks, we then constructed a global gene-network. Subsequent analyses of the global gene-network allowed inference of disease-related genes with high rank. We validated the proposed method by comparing with previous methods. The results indicated that the proposed method is a meaningful approach to infer disease-related genes.

A Comparative Analysis of Research on LIS Information Behavior and Health Information Seeking Behavior (문헌정보학의 정보행동과 의학분야의 건강정보탐색행동에 대한 연구들의 비교 분석)

  • Kim, Eungi
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.30 no.2
    • /
    • pp.167-187
    • /
    • 2019
  • Information behavior (IB) research in LIS and Health Information Seeking Behavior (HISB) in Health Medicine are two subject areas of research that have matured in the past few decades. This research aimed to compare these two research areas using a bibliometric approach. To conduct this study two distinct datasets were created using the Scopus database: a) bibliographic records of IB in the LIS domain, and b) bibliographic records of the HISB domain. The bibliometric analysis was performed according to the following criteria: published papers, citations, journal articles, author keywords, unique words in the title, words preceding "information" in the title, words preceding "study" in the title, and author keywords along with index keywords. As a result, the major differences in the two IB research areas were evident in terms of definitions, main focus, and general demographic groups. These varying types of differences suggest that researchers of the two areas should have flexibility when examining issues related to IB by considering the context and the unique distinction between the two fields.

Question Retrieval using Deep Semantic Matching for Community Question Answering (심층적 의미 매칭을 이용한 cQA 시스템 질문 검색)

  • Kim, Seon-Hoon;Jang, Heon-Seok;Kang, In-Ho
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.116-121
    • /
    • 2017
  • cQA(Community-based Question Answering) 시스템은 온라인 커뮤니티를 통해 사용자들이 질문을 남기고 답변을 작성할 수 있도록 만들어진 시스템이다. 신규 질문이 인입되면, 기존에 축적된 cQA 저장소에서 해당 질문과 가장 유사한 질문을 검색하고, 그 질문에 대한 답변을 신규 질문에 대한 답변으로 대체할 수 있다. 하지만, 키워드 매칭을 사용하는 전통적인 검색 방식으로는 문장에 내재된 의미들을 이용할 수 없다는 한계가 있다. 이를 극복하기 위해서는 의미적으로 동일한 문장들로 학습이 되어야 하지만, 이러한 데이터를 대량으로 확보하기에는 어려움이 있다. 본 논문에서는 질문이 제목과 내용으로 분리되어 있는 대량의 cQA 셋에서, 질문 제목과 내용을 의미 벡터 공간으로 사상하고 두 벡터의 상대적 거리가 가깝게 되도록 학습함으로써 의사(pseudo) 유사 의미의 성질을 내재화 하였다. 또한, 질문 제목과 내용의 의미 벡터 표현(representation)을 위하여, semi-training word embedding과 CNN(Convolutional Neural Network)을 이용한 딥러닝 기법을 제안하였다. 유사 질문 검색 실험 결과, 제안 모델을 이용한 검색이 키워드 매칭 기반 검색보다 좋은 성능을 보였다.

  • PDF