• Title/Summary/Keyword: 제동

Search Result 974, Processing Time 0.03 seconds

A Study on the Active Safety Features Assessment through Test Drive (도로 주행평가를 통한 능동 안전장치 연구)

  • Lee, Hwa Soo;Cho, Jae Ho;Yim, Jong Hyun;Lee, Hong Guk;Chang, Kyung Jin;Yoo, Song Min
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • This study examined the drivers' acceptance level of various active safety features with Korean drivers on Seoul urban and city roads. The test vehicle, 2013 Cadillac ATS, was equipped with FCA(Forward Collision Alert), LDW(Lane Departure Warning), SBZA(Side Blind Zone Alert), FRPA(Front/Rear Park Assist), RCTA(Rear Cross Traffic Alert), ACC(Adaptive Cruise Control), and AEB(Autonomous Emergency Braking). Participants had chances to run the tests on those systems in the parking lot accompanied by the 106km long stretch of predetermined route including local road and interurban highway in Seoul and Gyeonggi-do under normal traffic flowing environment. After the test, participants completed a series of questionnaires about the features they experienced. The results revealed that RCTA and SBZA systems received more favourable ratings compared to the other features in avoiding crashes. The respondents preferred sound alerts to haptic ones even though haptic warning methods were better in providing directional information.

Development of a coordinated control algorithm using steering torque overlay and differential braking for rear-side collision avoidance (측후방 충돌 회피를 위한 조향 보조 토크 및 차등 제동 분배 제어 알고리즘 개발)

  • Lee, Junyung;Kim, Dongwook;Yi, Kyongsu;Yoo, Hyunjae;Chong, Hyokjin;Ko, Bongchul
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.24-31
    • /
    • 2013
  • This paper describes a coordinated control algorithm for rear-side collision avoidance. In order to assist driver actively and increase driver's safety, the proposed coordinated control algorithm is designed to combine lateral control using a steering torque overlay by Motor Driven Power Steering (MDPS) and differential braking by Vehicle Stability Control (VSC). The main objective of a combined control strategy is twofold. The one is to prevent the collision between the subject vehicle and approaching vehicle in the adjacent lanes. The other is to limit actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort. In order to achieve these goals, the Lyapunov theory and LMI optimization methods has been employed. The proposed coordinated control algorithm for rear-side collision avoidance has been evaluated via simulation using CarSim and MATLAB/Simulink.

A Study on the Test Evaluation Method of AEB (V2P) Considering the Road Environment in Korea and Euro NCAP Test Protocol v3.0.1 (국내 도로환경과 Euro NCAP VRU Test Protocol v3.0.1을 고려한 AEB(V2P) 시험평가 방법에 관한 연구)

  • Kwon, Byeong-Heon;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.4
    • /
    • pp.28-38
    • /
    • 2019
  • In the world, traffic accidents and environmental pollution caused by the increase of vehicles are becoming a serious social problem. According to the 2016 data published by the Korea Highway Traffic Authority, Korea owns 49.9 vehicles per 100 people. This is the 28th largest number among the 35 OECD member countries. In addition, the number of deaths from traffic accidents in Korea totaled 4,292, of which 1,714 were caused by traffic accidents involving vehicles and pedestrians. To reduce these human casualties, the automotive industry is constantly working on the development and commercialization of Adaptive Driver Assist System (ADAS). ADAS is the system providing convenience and safeness for drivers. In general, ADAS consists of Autonomous Emergency Braking (AEB), Highway Driving Assist (HDA), Adaptive Cruise Control (ACC), Lane Keeping Assist System (LKAS). Among them, the AEB detects the possibility of collision by the vehicle itself and plays a role of avoiding the collision or reducing the damage through active braking. For such AEB, Euro NCAP has been developing test-evaluation methods for the vulnerable since 2017. Therefore, In this paper analyzes the scenario of Euro NCAP VRU Test Protocol v3.0.1, which will be established in 2020, and proposes test conditions according to the Korean road traffic law. In addition, the reliability of the proposed scenario and test conditions was verified by comparing and analyzing the proposed theoretical evaluation formulas and actual test results.

Predictive Algorithm of Self-Control System using Load Control Model applied to Automobile Dynamic (하중모델을 이용한 자동차 운동 분석과 자율 예측 시스템 알고리즘)

  • Wang, Hyun-Min;Woo, Kwang-Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.4
    • /
    • pp.61-68
    • /
    • 2010
  • Appling high technology of aerospace to automobile, so it is able to progress safety which is a goal of future automobile and to approach development of self-control automobile. This is realized dynamic model of airplane at DFCS(Digital Flight Control System). The DFCS calculates control values for self-control flight. If this high technology applies to automobile, then it is able to be maneuvered automobile like UAV's self-control flight. In this paper is reanalyzed automobile dynamic applied load control model used high-tech of airplane. It analyzes riding comfortable according to movement of automobile using the load control model, presents method of solution for improvement riding comfortable and presents example of self-control system used the load control model for self-control driving.

The First Korean-Made IT Convergence Electric Skateboard (한국 최초 IT융합 전기스케이트보드)

  • Jung, Sunghun;Youn, Sungwook
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.3
    • /
    • pp.31-40
    • /
    • 2017
  • The rise of eco-friendly personal electric mobility is a worldwide trend and the first Korean-made IT convergence electric skateboard, Youth Board, is developed to lead the trend. Youth Board is remotely controllable using either Youth Wearable Controller or Youth App through Bluetooth v4.0 communication, can speed up to 25 km/hr, and operating time is approximately 1.5 hr. A LED display located in the front side of Youth Board deck shows three different states to a rider for user convenience: remaining battery SOC, current driving speed, and braking amount. Indoor EMC test results between Youth Board and Youth Wearable Controller and outdoor Youth Board driving test results are analyzed. In particular, driving test results show the maximum current output is about 15% lowered compared to the other competitor electric skateboard and it lessens the power burden of the motor ESC. These results show Youth Board's usefulness as a personal mobility in the sense of small, light, and inexpensive aspects.

Design of Adaptive Neuro- Fuzzy Precompensator for Enhancement of Power System Stability (전력계통의 안정도 향상을 위한 적응 뉴로-퍼지 전 보상기 설계)

  • 정형환;정문규;이정필;이준탁
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.4
    • /
    • pp.14-22
    • /
    • 2001
  • In this paper, we design the Adaptive Neuro-Fuzzy Precompensator(ANFP) for the suppression of low-frequency oscillation and the improvement of system stability. Here, ANFP is designed to compensate the conventional Power System Stabilizer(PSS). This design technique has the structural merit that is easily implemented by adding ANFP to an existing PSS. Firstly, the Fuzzy Precompensator with Loaming ability is constructed and is directly learned from the input and output data of the generating unit. Because the ANFP has the property of learning, fuzzy rules and membership functions of the compensator can be automatically tuned by teaming algorithm Loaming is based on the minimization of the ems evaluated by comparing the output of the ANFP and a desired controller. Case studies show the 7posed schema can be provided the good damping of the power system over the wide range of operating conditions and improved dynamic performance of the system.

  • PDF

Experimental Study on Combustion Characteristics of Biodiesel Waste Cooking Oil in Marine Diesel Engine (선박디젤기관에서 바이오디젤 폐식용유의 연소특성에 대한 실험적 연구)

  • Cho, Sang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.381-386
    • /
    • 2015
  • Environmental pollution and alternative energy has attracted increasing interest. The use of diesel engines is expected to increase in the world owing to their fuel economy. The problem of air pollution emissions from marine engines is causing a major concern in many areas. An alternative fuel was introduced as an environmentally friendly fuel to reduce the toxic emissions from conventional fossil fuels. Biodiesel fuel, which is a renewable energy is highlighted as environmentally friendly energy. This energy can be operated in regular diesel engines when it is blended with invariable ratios without making changes. In this study, a bio-diesel fuel was produced from waste cooking oil and applied to a marine diesel engine to examine the effects on the characteristics of combustion. Waste cooking oil contains a high cetane number and viscosity component, a low carbon and oxygen content. As a result, the brake specific fuel consumption was increased, and the cylinder pressure, rate pressure rise and rate of heat release were decreased.

On-Road Driving Performance Analysis of Diesel-Hybrid Bus in Daegu Metropolitan Area (대구지역 디젤하이브리드 버스의 실도로 주행 성능 분석)

  • Kim, Hyunjun;Chun, Bongsu;Han, Manbae;Han, Moonsik;Kim, Yongrae;Lee, Yonggyu;Choi, Kyonam;Jeong, Dongsoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.27-33
    • /
    • 2013
  • In this study we analyzed the on-road driving performance of two parallel-type diesel-hybrid buses which have been driven in Daegu metropolitan area. A real-time on-board data logger was facilitated to measure the vehicle information such as vehicle speed, idle stop, state of charge of battery, and engine operating conditions. These diesel-hybrid buses ran as a commuter at Daegu Exco area and Dalsung industrial complex. The driving pattern in Exco area comprised more frequent idle stop and relatively lower speed than at Dalsung area, where comprised no idle stop. Due to those different driving patterns, the fuel economy at Dalsung showed $3.7\;km/{\ell}$, which is about 8% higher than that of Exco. The main causes of this come from the higher portion of regenerative braking and higher speed which moves to the operating points of diesel engine with a lower fuel consumption.

Analysis of Operational Issues for ICT-based On-Board Train Control System (ICT 기반 차상제어시스템 개발에 따른 운영 이슈 분석)

  • Kim, Young-Hoon;Choi, Won-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.575-583
    • /
    • 2011
  • In order to minimize the maintenance cost at local lines, Information & Communication Technology based onboard train control system is being developed. Unlike the central traffic control based fixed block system, this system use a moving block method and railway driver direct control switch and railway crossing. The purpose of this paper is to analyze the concerned main operational issues are as follows: the preparation of train operation, drivability, the role of driver and controller, block system and cost. We defined the role of driver and driver's input data for train service, and we designed the business process of driver using UML tool. We considered the aspect of drivability, DMI is needed to support the braking moment for the driver and driver training simulator. We designed the driver business process for control of switch and railway crossing. We analyzed the fixed block system and moving block system to confirm the difference with the existing operational method. The cost analysis structure is also needed for the operation cost comparison.

A Study on Emergency Communication Policy and System between Vehicles using Infrared Rays (적외선을 이용한 차량간 긴급통신 정책 및 시스템의 연구)

  • Cho, Myeon-Gyun
    • Journal of Digital Convergence
    • /
    • v.18 no.4
    • /
    • pp.229-236
    • /
    • 2020
  • As the number of elderly drivers increases, traffic accidents from the elderly also increase. In particular, the emergency situation of the elderly driver is not transmitted to the following vehicle during cloudy days and night highway accidents, so it is extended to the second and third accidents, leaving serious aftereffects. Therefore, there is an urgent need to establish an economic and effective inter-vehicle emergency communication system between the accident vehicle of the elderly and the following vehicles. In this paper, we have proposed a policy and method that can take advantage of the special emergency light pattern of an elderly driver in an emergency and transmit it to the following vehicles, thereby providing secondary accident prevention and emergency relief. Furthermore, by introducing an infrared emergency communication system between vehicles using red brake lights and implementing it as a prototype of RC-Car, we have checked the feasibility of the system.